Answer:
9 - 10N to the left
10 - There is no change on the object
Explanation:
Can I have brainliest answer pls?
You have three known variables:
Acceleration -

Time -

Initial Velocity -

For the first part of your question:

For the second part of your question:

This still needs to be converted to m/h:
Question: How fast was the arrow moving before it joined the block?
Answer:
The arrow was moving at 15.9 m/s.
Explanation:
The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

where
is the mass of the arrow,
is the mass of the block,
of the change in height of the block after the collision, and
is the velocity of the arrow before it hit the block.
Solving for the velocity
, we get:

and we put in the numerical values
,



and simplify to get:

The arrow was moving at 15.9 m/s
<span>The photoelectric effect is about electrons being ejected from metals when light is shined on metals. The electrons do not behave like waves in the photoelectric effect. Black body radiation is all about the radiation emitted by warm bodies and not about those bodies behaving like waves. The emission spectra of atoms is all about what light is given off by atoms when electrons in those atoms jump down to lower energy levels from higher levels. That also has nothing to do with matter behaving as a wave. Interference is classically defined as the generation of a new wave with an amplitude modulated according to the waves that interfere to form that new wave. Note its emphasis on the wave part.</span>
Explanation:
1. Mass of an object
2. Distance between the objects