Explanation:
According to newtons first law of motion:
'' a body will continue in its state of rest or uniform motion along a path unless it is acted upon by an external force".
A body in equilibrium that is floating will be stable and not move in any direction. Even if it moves, the motion will be constant wouldn't change.
- To move the body in any direction, one has to swim.
- Swimming is the application of an external force to counter the balanced forces at equilibrium on a body.
- This works when the net external force is greater than that the balanced forces.
learn more:
Newton brainly.com/question/11411375
#learnwithBrainly
Answer:
Explanation:
a). Find the graph attached for the motion.
b). If a shopper walk 5.4 m westwards then 7.8 m eastwards,
Distance traveled by the shopper = Distance traveled in eastwards + Distance traveled westwards
= 5.4 + 7.8
= 13.2 m
c). Displacement of the shopper = Distance walked westwards - Distance traveled eastwards
= 5.4 - 7.8
= -2.4 m
Therefore, magnitude of the displacement of the shopper is = 2.4 m
And the direction of the displacement is eastwards.
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
The answer is 12.5 kg because 250N / 20m/s^2
I hope that helped