Rigidbodies are components that allow a GameObject<u> to react to real-time physics. </u>
Explanation:
- Rigidbodies are components that allow a GameObject to react to real-time physics. This includes reactions to forces and gravity, mass, drag and momentum. You can attach a Rigidbody to your GameObject by simply clicking on Add Component and typing in Rigidbody2D in the search field.
- A rigidbody is a property, which, when added to any object, allows it to interact with a lot of fundamental physics behaviour, like forces and acceleration. You use rigidbodies on anything that you want to have mass in your game.
- You can indeed have a collider with no rigidbody. If there's no rigidbody then Unity assumes the object is static, non-moving.
- If you had a game with only two objects in it, and both move kinematically, in theory you would only need a rigidbody on one of them, even though they both move.
Answer:
24.57 revolutions
Explanation:
(a) If they do not slip on the pavement, then the angular acceleration is
(b) We can use the following equation of motion to find out the angle traveled by the wheel before coming to rest:
where v = 0 m/s is the final angular velocity of the wheel when it stops, = 95rad/s is the initial angular velocity of the wheel, is the deceleration of the wheel, and is the angle swept in rad, which we care looking for:
As each revolution equals to 2π, the total revolution it makes before stop is
154.375 / 2π = 24.57 revolutions
Answer:
Tension T1 is less than tension T2.
T1 < T2
Explanation:
According to given data,
mass of box A ( mA) is grater than mass of box B (mB)
we can write,
m(A) > m(B)
Newton's second law states that:
Tension of object is directly proportional to the mass of the system.
T ∝ m
here Boxes A and B are being pulled to the right on a frictionless surface,
so Tension T1 generates due to the mass of box A m(A)
and Tension T2 arises due to mass of the system m(A) + m(B)
Thus tension T1 will be less than tension T2
T1 < T2
learn more about Tension force here:
<u>brainly.com/question/13175014</u>
<u />
#SPJ4
The statement that describes the error in the work is that the distance must be converted to meters (m).
<h3>FORMULA FOR WORK:</h3>
Work can be calculated by using the following formula:
W = F × d
Where;
- W = work done
- F = force (N)
- d = distance (m)
According to this question, the force is given as 140N and the distance is given as 30cm. The force is calculated as follows:
F = 140N × 30cm = 4200J
This calculation is erroneous because the unit of distance should be converted from cm to meters.
Learn more about work done at: brainly.com/question/3902440