Answer:
No, the farmer is not able to move the mule.
Explanation:
Mass =100 kg
Force=F=800 N
The coefficient between the mule and the ground=

Static friction force,f=
Normal force=N=mg
Static friction force,f=
Using 
F<f
Static friction force is greater than applied force.
Therefore , the farmer is not able to move the mule.
Answer:
Explanation: Covalent bonding occurs when pairs of electrons are shared by atoms. Atoms will covalently bond with other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their outermost (valence) electrons, atoms can fill up their outer electron shell and gain stability.
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
F = m a = m v / t where v is the change in velocity in time t
F = p / t since m v is equal to p
F = 2.2 (kg m / s) / 1.1 s = 2 kg-m / s^2 = 2 N
Or you can use the impulse equation
Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.