Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by
As the energy in the system is conserved we have
The speed of the 8 kg block just before collision is 3.258 m/s
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring
Answer:
<em>Its speed will be 280 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the speed of an object changes by an equal amount in every equal period of time.
If a is the constant acceleration, vo the initial speed, vf the final speed, and t the time, vf can be calculated as:
The object accelerates from rest (vo=0) at a constant acceleration of . The final speed at t=35 seconds is:
Its speed will be 280 m/s
Answer:
The magnetic field of Earth is created by currents of electricity that flow in the molten center.
Explanation: