Answer:
a = 2 m/s^2
which agrees with the third answer option provided.
Explanation:
Recall the kinematic formula for displacement under the action of a constant acceleration "a":
yf - yi = 1/2 a t^2
using the information provided this equation becomes:
9 = 1/2 a (3)^2
solve for a:
9 * 2 / 9 = a
then a = 2 m/s^2
which agrees with the third answer option provided.
Answer:
1. 
2. 
Explanation:
1. According to Newton's law of motion, the puck motion is affected by the acceleration, which is generated by the push force F.
In Newton's 2nd law: F = ma
where m is the mass of the object and a is the resulted acceleration. So in the 2nd experiment, if we double the mass, a would be reduced by half.

Since the puck start from rest, in the 1st experiment, to achieve speed of v it would take t time

Now that acceleration is halved:


You would need to push for twice amount of time 
2. The distance traveled by the puck is as the following equation:

So if the acceleration is halved while maintaining the same d:

As
, then
. Also 



So t increased by 1.14
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s
People are resistant to change, People have political freedom, Farmers institute new farming techniques and there is little need for medical facilities.