Answer:
energy that is stagnant and cannot be changed
Answer:
I'm not sure how to use it using the Series, but it would be the plastic comb
Explanation:
In the winter, it's likely to be cold and the glass would absorb that energy, also making it cold. in order to be able to hold it, you would need something warm, thus making the plastic one the better option as it is less likely to absorb the cold energy
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
Answer: 1.91*10^8 N/m²
Explanation:
Given
Radius of the steel, R = 10 mm = 0.01 m
Length of the steel, L = 80 cm = 0.8 m
Force applied on the steel, F = 60 kN
Stress on the rod, = ?
Area of the rod, A = πr²
A = 3.142 * 0.01²
A = 0.0003142
Stress = Force applied on the steel/Area of the steel
Stress = F/A
Stress = 60*10^3 / 0.0003142
Stress = 1.91*10^8 N/m²
From the calculations above, we can therefore say, the stress on the rod is 1.91*10^8 N/m²