Answer:
B. 10m/s
Explanation:
If a drone flies 8 m/s due East with respects to the wind and the wind is blowing 6 m/s due North, the speed of the drone with respect to the ground is its displacement.
Displacement is calculated using Pythagoras theorem.
d² = 8²+6²
d² = 64+36
d² = 100
Square root both sides
√d² = √100
d = 10m/s
Hence the distance of the drone with respect to the ground is 10m/s
Option B is correct
Answer:
standing wave, also called stationary wave, combination of two waves moving in opposite directions, each having the same amplitude and frequency.
For oppositely moving waves, interference produces an oscillating wave fixed in space. fixed nodes in a standing wave. Location of fixed nodes in a standing wave
these are the points that undergo the maximum displacement during each vibrational cycle of the standing wave. In a sense, these points are the opposite of nodes, and so they are called antinodes. A standing wave pattern always consists of an alternating pattern of nodes and antinodes
Explanation:
Note that
1 J = 0.239 cal
By definition,
Work = Force x Distance
Therefore work done is
W = (1 N)*(2000 m) = 2000 J
In calories,
W = (2000 J)*(0.239 cal/J) = 478 cal
Answer: 478 calories
Acceleration of the car is 3.375 m/s² and the force of the car moving forward is 5062.5 N
Explanation:
- Acceleration is the rate of change of velocity.
- It is given by the equation, a = change in velocity/time
Here, velocity changes from 0 to 27 m/s and time = 8
⇒ Acceleration = 27 - 0/8 = 27/8 = 3.375 m/s²
- Force is calculated by the equation, F = Mass × Acceleration
- This is based on Newton's second law of motion.
Here, mass of the car = 1500 kg and a = 3.375 m/s²
⇒ Force = 1500 × 3.375 = 5062.5 N