1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
3 years ago
10

What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup

described in Question 3

Physics
1 answer:
Fantom [35]3 years ago
5 0

Answer:

3) Transmitted intensity of light if unpolarized light passes through a single polarizing filter = 40 W/m²

- Transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described = 7.5 W/m²

Explanation:

Complete Question

3) What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m²?

- What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3 (the setup)? Show all work in your answer.

The image of this setup attached to this question as obtained from online is attached to this solution.

Solution

3) When unpolarized light passes through a single polarizer, the intensity of the light is cut in half.

Hence, if the initial intensity of unpolarized light is I₀ = 80 W/m²

The intensity of the light rays thay pass through the first single polarizer = I₁ = (I₀/2) = (80/2) = 40 W/m²

- According to Malus' law, the intensity of transmitted light through a polarizer is related to the intensity of the incident light and the angle at which the polarizer is placed with respect to the major axis of the polarizer before the current polarizer of concern.

I₂ = I₁ cos² θ

where

I₂ = intensity of light that passes through the second polarizer = ?

I₁ = Intensity of light from the first polarizer that is incident upon the second polarizer = 40 W/m²

θ = angle between the major axis of the first and second polarizer = 30°

I₂ = 40 (cos² 30°) = 40 (0.8660)² = 30 W/m²

In the same vein, the intensity of light that passes through the third/additional polarizer is related to the intensity of light that passes through the second polarizer and is incident upon this third/additional polarizer through

I₃ = I₂ cos² θ

I₃ = intensity of light that passes through the third/additional polarizer = ?

I₂ = Intensity of light from the second polarizer that is incident upon the third/additional polarizer = 30 W/m²

θ = angle between the major axis of the second and third/additional polarizer = 60° (although, it is 90° with respect to the first polarizer, it is the angle it makes with the major axis of the second polarizer, 60°, that matters)

I₃ = 30 (cos² 60°) = 30 (0.5)² = 7.5 W/m²

Hope this Helps!!!

You might be interested in
Unpolarized light with an intensity of 655 W / m2 is incident on a polarizer with an unknown axis. The light then passes through
Norma-Jean [14]

Answer:

1.\theta=29.84^{0}

2.\theta=60.15^{0}

Explanation:

Polarizes axis can create two possible angles with the vertical.

first we have to find the intensity of  first polarizer

which is given as

I=\frac{I_{0} }{2}

I= \frac{655\frac{W}{M^{2} } }{2}

I=327.5\frac{W}{m^{2} }

For a smaller angle for the first polarizer:

According to Malus Law

I_{2} =I_{1} Cos^{2}(90^{0} - \theta)

I_{2} =I_{1} sin^{2}\theta

\frac{I_{2} }{I_{1} }=Sin^{2}\theta

taking square root on both sides

\sqrt{\frac{163}{327.5} } = sin\theta

\theta=Sin^{-1}(0.4977)

\theta=29.84^{0}

For a larger angle for the first polarizer:

According to Malus Law

I_{2} =I_{1} cos^{2}\theta

\frac{I_{2} }{I_{1} }=Cos^{2}\theta

taking square root on both sides

\sqrt{\frac{163}{327.5} } = cos\theta

\theta=Cos^{-1}(0.4977)

\theta=60.15^{0}

7 0
3 years ago
What is the greenhouse effect?
Zanzabum
A on that problem :)[email protected]
6 0
3 years ago
Read 2 more answers
The period of time required for the moon to complete a cycle of phases is called the ________ month.
eduard
Synodic month, also known as a lunar month.
3 0
3 years ago
How much work is required to compress 5.05 mol of air at 19.5°C and 1.00 atm to one-eleventh of the original volume by an isothe
Rus_ich [418]

Explanation:

(a)  For an isothermal process, work done is represented as follows.

             W = -nRT ln(\frac{V_{2}}{V_{1}})

Putting the given values into the above formula as follows.

        W = -nRT ln(\frac{V_{2}}{V_{1}})

             = - 5.05 mol \times 8.314 J/mol K \times (19.5 + 273) K \times ln (\frac{\frac{V_{1}}{11}}{V_{1}})

             = -12280.82 \times ln (0.09)

             = -12280.82 \times -2.41

             = 29596.78 J

or,         = 29.596 kJ       (as 1 kJ = 1000 J)

Therefore, the required work is 29.596 kJ.

(b) For an adiabatic process, work done is as follows.

         W = \frac{P_{1}V^{\gamma}_{1}(V^{1-\gamma}_{2} - V(1-\gamma)_{1})}{(1 - \gamma)}

              = \frac{-nRT_{1}(11^{\gamma - 1} - 1)}{1 - \gamma}

              = \frac{-5.05 \times 8.314 J/mol K \times 292.5 (11^{1.4 - 1} - 1)}{1 - 1.4}

              = 49.41 kJ

Therefore, work required to produce the same compression in an adiabatic process is 49.41 kJ.

(c)   We know that for an isothermal process,

               P_{1}V_{1} = P_{2}V_{2}

or,       P_{2} = \frac{P_{1}V_{1}}{V_{2}}

                    = 1 atm (\frac{V_{1}}{\frac{V_{1}}{11}})

                    = 11 atm

Hence, the required pressure is 11 atm.

(d)   For adiabatic process,  

          P_{1}V^{\gamma}_{1} = P_{2}V^{\gamma}_{2}

or,       P_{2} = P_{1} (\frac{V_{1}}{V_{2}})^{1.4}

                    = 1 atm (\frac{V_{1}}{\frac{V_{1}}{11}})^{1.4}

                    = 28.7 atm

Therefore, required pressure is 28.7 atm.

6 0
3 years ago
What can be found in a compost bin?
BigorU [14]
D. all of the above

Hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • Which best explains why a wood burning fireplace represents an open system
    13·2 answers
  • If a farsighted person has a near point that is 0.600 m from the eye, what is the focal length f2 of the contact lenses that the
    8·1 answer
  • A tall flagpole is a harmonic oscillator, flexing back and forth with a steady period. The pole rises from a base that is fixed
    12·1 answer
  • If it takes 100 N to get a 10 kg object to accelerate at 10m/s/s, how much force will it take to get a 20 kg object to accelerat
    14·1 answer
  • The rate of rotation of the disk is gradually increased. The coefficient of static friction between the coin and the disk is 0.5
    8·1 answer
  • A hawk flew 600 meters in 60 seconds. A sparrow flew 400 meters in 30 seconds. Which bird flew faster? How fast did each bird fl
    10·1 answer
  • Under steady state, a compressor is used to increase the pressure of an ideal gas air from 100 kPa to 1 MPa. Meanwhile the tempe
    13·1 answer
  • What is polarization. How can we remove it?
    12·1 answer
  • Alchemists searched for ways to change lead into gold. Which type of change
    7·2 answers
  • An object travels 5m/s in 2 seconds. How far did it travel?​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!