There are different kinds of conductors, most notably electrical and thermal conductors. But they are often inclusive of each other (electrical conductors are typically good thermal conductors).
A conductor transmits something through its body with high efficiency while an insulator does not transmit very well. In the case of electricity, a conductor transmits electrical energy between two points while an insulator blocks the flow of electricity.
Two examples of conductors are copper and silver. Two examples of insulators are wood and styrofoam.
Answer:
pf = 198.8 kg*m/s
θ = 46.8º N of E.
Explanation:
- Since total momentum is conserved, and momentum is a vector, the components of the momentum along two axes perpendicular each other must be conserved too.
- If we call the positive x- axis to the W-E direction, and the positive y-axis to the S-N direction, we can write the following equation for the initial momentum along the x-axis:

- We can do exactly the same for the initial momentum along the y-axis:

- The final momentum along the x-axis, since the collision is inelastic and both objects stick together after the collision, can be written as follows:

- We can repeat the process for the y-axis, as follows:

- Since (1) is equal to (3), replacing for the givens, and since p₀Bₓ = 0, we can solve for vfₓ as follows:

- In the same way, we can find the component of the final momentum along the y-axis, as follows:

- With the values of vfx and vfy, we can find the magnitude of the final speed of the two-object system, applying the Pythagorean Theorem, as follows:

- The magnitude of the final total momentum is just the product of the combined mass of both objects times the magnitude of the final speed:

- Finally, the angle that the final momentum vector makes with the positive x-axis, is the same that the final velocity vector makes with it.
- We can find this angle applying the definition of tangent of an angle, as follows:

⇒ θ = tg⁻¹ (1.06) = 46.8º N of E
Answer:
The value of spring constant is 266.01 
Explanation:
Given:
Mass of pellet
kg
Height difference of pellet rise
m
Spring compression
m
From energy conservation law,
Spring potential energy is stored into potential energy,

Where
spring constant, 



Therefore, the value of spring constant is 266.01 