Answer:
i believe its 26.7
Explanation:
if the runner goes 8.9 m/s each second while accelerating for 3 seconds to reach top speed, the top speed would be 26.7 m/s
Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
I think:
In motion- 40
Not moving- 20
Answer:
Spring constant of the spring will be equal to 9.255 N /m
Explanation:
We have given mass m = 0.683 kg
Time taken to complete one oscillation is given T = 1.41 sec
We have to find the spring constant of the spring
From spring mass system time period is equal to
, here m is mass and K is spring constant
So 

Squaring both side


So spring constant of the spring will be equal to 9.255 N /m