I believe that the best answer among the choices provided by the question is the second choice ,<span>B) radiant energy
</span>
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))
Answer:
m = 69.9 kg
Explanation:
The mass and the weight of an object are two different quantities. Mass is basically the amount of matter that is present in a body. It remains same everywhere in the universe and measured in kilograms.
Weight is basically a force. It is the force by which earth attracts everything towards itself. The weight of an object changes from planet to planet, with the change in value of the gravitational acceleration (g).
Therefore, the relation between mass and weight of an object is given by the following formula:
W = mg
m = W/g
where,
m = mass = ?
W = Weight = 685 N
g = 9.8 m/s²
Therefore,
m = (685 N)/(9.8 m/s²)
<u>m = 69.9 kg</u>
Getting a good night sleep can benefit you in a lot of ways. Also that’s not a question.