The area of one of the triangular lateral faces is

You're told that the slant height, which is the same as the height of the triangular face, is 9.8, so you have

where

is the length of the base of the triangle, which is also the same as the side length of the base of the pyramid. So
I am not sure maybe it is 6
Answer:
first one is 5.8
second on is 4.47 round
third one is 1.92
Step-by-step explanation:
We have been given that the distribution of the number of daily requests is bell-shaped and has a mean of 38 and a standard deviation of 6. We are asked to find the approximate percentage of lightbulb replacement requests numbering between 38 and 56.
First of all, we will find z-score corresponding to 38 and 56.


Now we will find z-score corresponding to 56.

We know that according to Empirical rule approximately 68% data lies with-in standard deviation of mean, approximately 95% data lies within 2 standard deviation of mean and approximately 99.7% data lies within 3 standard deviation of mean that is
.
We can see that data point 38 is at mean as it's z-score is 0 and z-score of 56 is 3. This means that 56 is 3 standard deviation above mean.
We know that mean is at center of normal distribution curve. So to find percentage of data points 3 SD above mean, we will divide 99.7% by 2.

Therefore, approximately
of lightbulb replacement requests numbering between 38 and 56.
Shortest side (a) = 58
middle side (b) = 64
longest side (c) = 77
the 3 sides a + b + c = 199
b = a + 6
c = a + 19
substitute your new values for b & c into your original formula, so:
a + (a+6) + (a+19) = 199
3a + 25 = 199
3a = 174
a = 58
then substitute 58 into your b & c formulas to figure out the rest
b = a + 6 = 58 + 6 = 64
c = a + 19 = 58 + 19 = 77