Answer:
See below for answer and explanations (as well as an attached graph)
Step-by-step explanation:
Pay attention to the behavior of the asymptotes. If the asymptotes are approaching a certain x-value or y-value, then that value is undefined for the function.
Take for example
:
- As x approaches ∞ and -∞, then y approaches 0, which is our horizontal asymptote
- As y approaches ∞ and -∞, then x approaches 0, which is our vertical asymptote
See the graph for a visual.
Answer:
Send what?
Step-by-step explanation:
I need a better question
Answer:
See the explanation
Step-by-step explanation:
We know that
f(x) = 2x⁶ + 3x⁴ - 4x³ + (1/x) - sin2x
Lets calculate the derivatives:
f'(x) = 6(2x⁵) + 4(3x³) - 3(4x²) -( 1/x²) - 2(cos2x)
f'(x) = 12x⁵ + 12x³ - 12x² - (1/x²) - 2cos2x
Similarly:
f''(x) = 60x⁴ + 36x² - 24x + (2/x³) + 4sin2x
f'''(x) = 240x³ + 72x - 24 - (6/x⁴) + 8cos2x
Rearrange:
f'''(x) - 240x³ +72x - (6/x⁴) + 8cos2x - 24
f''''(x) = 720x² + 72 + (24/x⁵) - 16sin2x
Rearrange:
f''''(x) = 720x² + (24/x⁵) - 16sin2x +72
V=127.16pi m^3
The formula for the Volume of a Cylinder is V=(pi)r^2h
First we have to fill in the variables with the information we have. The radius is 3.4m. The height is 11m. We want to leave the answer in terms of pi, so we won't multiply by pi at all. Let's plug it in.
V=(pi)3.4^2•11
To square a number we multiply it by itself, so 3.4 • 3.4 equals 11.56.
V=(pi)11.56•11
Next, we multiply the radius squared, which we already found by the height of the cylinder which is 11. 11.56 times 11 equals 127.16.
V=127.16pi
We found the final answer and don't use pi since we want it in terms of pi. Since a Cylinder is a 3-D figure, that means the units of measurement is cubed.
The answer is A) 127.16pi m^3
Answer:
a) ![A=\left[\begin{array}{ccc}1&2&3\\1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C1%26-1%261%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) 
c) ![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
a) considering the equation:
Minimize 
(matrix A)
vector b
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) If Pxn is matrix B and p-vector d, we have:
minimize 
![Ax=\left[\begin{array}{ccc}0&-6&0\\-4&3&0\\1&8&0\end{array}\right]](https://tex.z-dn.net/?f=Ax%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-6%260%5C%5C-4%263%260%5C%5C1%268%260%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-4\\1\\3\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%5C%5C1%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
![Ax-b=\left[\begin{array}{ccc}-bx_{2}+4 \\-4x_{1}+3x_{2}-1 \\x_{1}+8x_{2}-3 \end{array}\right] =1](https://tex.z-dn.net/?f=Ax-b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-bx_%7B2%7D%2B4%20%5C%5C-4x_%7B1%7D%2B3x_%7B2%7D-1%20%20%5C%5Cx_%7B1%7D%2B8x_%7B2%7D-3%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D1)

c) minimize 
in matrix:
![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)