Answer:
The slope is 4
Step-by-step explanation:
First we pick 2 points (x, y):
(0, -2) and (1, 2)
Then, we use the slope (m) formula:
m = (y2 - y1)/(x2 - x1)
Given:
y2 = 2
y1 = -2
x2 = 1
x1 = 0
Work:
m = (y2 - y1)/(x2 - x1)
m = (2 + 2)/(1 - 0)
m = 4/1
m = 4
If <3=70°, then find the rest of the angles.
3/4
5/6
7/8
79
1.) m<1=
2.) m<2=
4.) m<5=
3.) m<4=
6.) m<7=
5.) m<6=
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
subscribes to iwpp
Gross pay = 500
deductions :
medicare tax : 0.0145(500) = 7.25
S.S tax : 0.062(500) = 31.00
sales tax : 0.02(500) = 10.00
income tax : 0.2(500) = 100
insurance = 20
total deductions : 7.25 + 31 + 10 + 100 + 20 = 168.25
gross pay - deductions = net pay
500 - 168.25 = net pay
331.75 = net pay <===
Answer:
![\left[\begin{array}{cccc}-12&-13&13&|15\\7&-10&-3&|11\\7&14&5&\:\:\:|-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D-12%26-13%2613%26%7C15%5C%5C7%26-10%26-3%26%7C11%5C%5C7%2614%265%26%5C%3A%5C%3A%5C%3A%7C-5%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The system of equations is;
-12x-13y +13z =15
7x-10y-3z = 11
7x+14y +5z = -5
The coefficient matrix is ![\left[\begin{array}{ccc}-12&-13&13\\7&-10&-3\\7&14&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-12%26-13%2613%5C%5C7%26-10%26-3%5C%5C7%2614%265%5Cend%7Barray%7D%5Cright%5D)
The constant matrix is ![\left[\begin{array}{c}15\\11\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D15%5C%5C11%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
The augmented matrix is ![\left[\begin{array}{cccc}-12&-13&13&|15\\7&-10&-3&|11\\7&14&5&\:\:\:|-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D-12%26-13%2613%26%7C15%5C%5C7%26-10%26-3%26%7C11%5C%5C7%2614%265%26%5C%3A%5C%3A%5C%3A%7C-5%5Cend%7Barray%7D%5Cright%5D)
Parallelograms, rectangles, rhombus, or square