Answer:
Friction always acts opposite to the motion.
Answer:
223.25
Explanation:
The thermal conductivity of an object is defined as the measure or the ability of the object to transfer heat or conduct heat through its body.
In the context, the thermal conductivity of the material is given as

And it is given that :
1 Btu = 1055 J
1 ft = 0.3048 m

We know that 1 h = 3600 s
So the thermal conductivity of the material in
is :
Thermal conductivity :


= 223.25
Answer:
reaching a speed of 30 meters per second in 6 seconds.
During the 6 seconds, the car has traveled
a distance of
1. 180 m
2. 60 m
3. 15 m
4. 30 m
5. 90 m
Explanation:
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Answer:
_s = 37.77 m / s
Explanation:
This is an exercise of the Doppler effect that the change in the frequency of the sound due to the relative speed of the source and the observer, in this case the observer is still and the source is the one that moves closer to the observer, for which relation that describes the process is
f ’= f₀
where d ’= 530 Make
when the ambulance passes away from the observer the relationship is
f ’’ = f₀
where d ’’ = 424 beam
let's write the two expressions
f ’ (v-v_s) = fo v
f ’’ (v + v_s) = fo v
let's solve the system, subtract the two equations
v (f ’- f’ ’) - v_s (f’ + f ’’) = 0
v_s = v
the speed of sound is v = 340 m / s
let's calculate
v_s = 340
v_s = 340
)
v_s = 37.77 m / s