1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
3 years ago
11

The Earth's electric field creates a potential that increases 100 V for every meter of altitude. If an object of charge 4.5 mC a

nd mass 68 g falls a distance of 1.0 m from rest under the influence of the Earth's electric and gravitational fields, what is its final kinetic energy
Physics
1 answer:
castortr0y [4]3 years ago
8 0

Answer:

The final kinetic energy is  K =  1.1 \ J

Explanation:

From the question we are told that

    The electric field is  E =  100 \ V/m

    The charge on the object is  q =  4.5 mC  =  4.5 *10^{-3} \ C

    The mass of the object is  m_o  =  68 \ g  = 0.68 \ kg

     The distance moved by the object is d =  1.0 \ m

The workdone on the object by the fields  is  mathematically represented as

   W =  [qE + mg]d

Now this workdone is equivalent to the final kinetic energy so  

      K = W =  [qE + mg]d

substituting values

        K = W =  [4.5*10^{-3  } *100  + 0.68 * 9.8]* 1

        K =  1.1 \ J

You might be interested in
Please help me with 1,2,3,4,5,6
Trava [24]
I know that 4. Is wave 2 and 5. Is wave 3.
3 0
3 years ago
A pickup truck is carrying a toolbox, but the rear gate of the truck is missing, so the box will slide out if it is set moving.
Anon25 [30]

Answer:

t=7.33 s

Explanation:

According to Newton's second law:

\sum F=m*a

because we don't want the box to slide, the acceleration has to be zero.

\sum F=-F_{friction}+F_{truck}=0\\F_{truck}=F_{friction}\\F_{friction}=\µ*m*g=0.500*9.81*m\\F_{friction}=4.91*m

we know that:

F=m*a\\4.91m=m*a\\a=4.91m/s^2

Now having the acceleration, we can use the following formula.

v_f=a*t\\t=\frac{36.0m/s}{4.91m/s^2}\\\\t=7.33s

7 0
3 years ago
Suppose an element had an atomic number of 52. How many protons would that element have?
frutty [35]
The element would have 52 protons because atomic number gives protons.
4 0
3 years ago
Read 2 more answers
The position of a full moon is located
marissa [1.9K]

Answer:

opposite the sun. between the Earth and the sun. rising perpendicular to the sun.

Explanation:

4 0
3 years ago
Read 2 more answers
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • When checking for noncondensables inside a recovery cylinder why should the technician allow the temperature of the cylinder to
    13·1 answer
  • When ____________________ equals the force of gravity on a falling object, the object reaches terminal velocity.
    8·1 answer
  • A 0.250-kg ball is thrown upwards with an initial velocity of 12.0 m/s Determine the acceleration of the ball when it has reache
    6·1 answer
  • Which terrestrial planet would have its surface temperature the most dramatically changed if its greenhouse gases were removed f
    6·1 answer
  • Nicole is putting together a new workout program. She does a large amount of research to determine how often she should exercise
    12·2 answers
  • What does weathering do?
    12·1 answer
  • Alyssa is taking a walk on a nature path near her neighborhood. She
    11·1 answer
  • They did a flu shot from McKinnon at 45° to the horizontal with an initial speed of 25 m/s and that is positioned at a horizonta
    11·1 answer
  • . A 225-kg crate is pushed horizontally with a force of 710 N. If the coefficient of friction is 0.20, calculate the acceleratio
    12·1 answer
  • When two systems in contact are not at the same temperature, _____ occurs.expansionheat flowfrictionevaporation
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!