Answer:
what is that?
Explanation:
i dont know what us that sorry
Answer:
76.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 330 m / sec
wavelength ( λ ) = 4.3 m
We have to calculate Frequency ( f ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 330 / 4.3 Hz
= > f = 3300 / 43 Hz
= > f = 76.74 Hz
Hence, frequency of sound is 76.74 Hz.
This question involves the concepts of Wein's displacement law and characteristic wavelength.
The blackbody temperature will be "3.22 x 10⁵ k".
<h3>WEIN'S DISPLACEMENT LAW</h3>
According to Wein's displacement law,

where,
= characteristic wavelength = 9 μm = 9 x 10⁻⁹ m- T = temperature = ?
- c = Wein's displacment constant = 2.897 x 10⁻³ m.k
Therefore,

T = 3.22 x 10⁵ k
Learn more about characteristic wavelength here:
brainly.com/question/14650107
Answer:
UV light is more powerful as it has greater energy.
Explanation:
The energy propagated by electromagnetic waves ( light ) through vacuum or medium is known as electromagnetic radiation.
The frequency/wavelength range of electromagnetic radiation is known as electromagnetic spectrum. The electromagnetic spectrum ranging from gamma ray to radio waves.
Frequency range of UV light = ( 8 x 10¹⁴ to 3 x 10¹⁶ ) Hz
Frequency range of Microwaves = ( 300 x 10⁶ to 300 x 10⁹ ) Hz
Ratio of UV light to Microwaves = (
to
)
= ( 2.66 x 10⁶ to 1 x 10⁸ )
Energy of electromagnetic radiation is given by the relation:
E = hν
Here h is plank's constant and ν is frequency.
UV light is more powerful than Microwaves as frequency of UV light is greater than frequency of microwaves. Thus, by the above equation, the energy of UV light is more than energy of Microwaves.
<span>Melting of ice is an endothermic process, meaning that energy is absorbed. When ice spontaneously melts, ΔH (change in enthalpy) is "positive". ΔS (entropy change) is also positive, because, becoming a liquid, water molecules lose their fixed position in the ice crystal, and become more disorganized. ΔG (free energy of reaction) is negative when a reaction proceeds spontaneously, as it happens in this case. Ice spontaneously melts at temperatures higher than 0°C. However, liquid water also spontaneously freezes at temperatures below 0°C. Therefore the temperature is instrumental in determining which "melting" of ice, or "freezing" of water becomes spontaneous. The whole process is summarized in the Gibbs free energy equation:
ΔG = ΔH – TΔS</span>