<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer:
YOUR ANSWER IS GIVEN BELOW:
Explanation:
The abundance of helium in the universe and the redshift of light from the galaxies.
Answer: d. I or II
Explanation: A traveling wave has speed that depends on characteristics of a medium. Characteristics like linear density (μ), which is defined as mass per length.
Tension or Force (
) is also related to the speed of a moving wave.
The relationship between tension and linear density and speed is ginve by the formula:

So, for the traveling waves generated on a string fixed at both ends described above, ways to increase wave speed would be:
1) Increase Tension and maintaining mass and length constant;
2) Longer string will decrease linear density, which will increase wave speed, due to their inversely proportional relationship;
Then, ways to increase the wave speed is
I. Using the same string but increasing tension
II. Using a longer string with the same μ and T.
Answer:
Both warming up and cooling down or not important