Here easy answer from online
In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), whereas weight is the force exerted on an object by gravity.
The angle of the wedge is 30°.
Answer:
5.88 ft/s
Explanation:
a) The block will slide down due to it's weight.
initial velocity u= 0
final velocity, v
acceleration, a = g sin 30° = 32 ft/s²× sin 30° = 16 ft/s²
Sliding displacement, s = 3ft
Use third equation of motion:

substitute the values and solve for v

b) Use conservation of momentum:
Initial momentum of the system = 0
final momentum = (15) ( 9.8)+ (25)(v')
v' = 5.88 ft/s
Answer:
W = 8.01 × 10^(-17) [J]
Explanation:
To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:
W = q*V
where:
q = charge = 1,602 × 10^(-19) [C]
V = voltage = 500 [V]
W = work [J]
W = 1,602 × 10^(-19) * 500
W = 8.01 × 10^(-17) [J]
Answer:
1) The greatest height attained by the ball equals 20.387 meters.
2) The time it takes for the ball to reach 15 meters approximately equals 1 second.
Explanation:
The greatest height will be attained when the ball stop's in the air and starts falling back to the earth.
thus using third equation of kinematics we obtain the height attained as

where
'v' is the final speed of the ball
'u' is the initial speed of the ball
'a' is the acceleration that the ball is under which in this case equals 9.81 
's' is the distance it covers
Thus for maximum height applying the values in the equation we get

Using the same equation we can find the speed of the ball when it reaches 15 meters of height as

the time it takes to reduce the velocity to this value can be found by first equation of kinematics as
