Answer:
B) more dense; change to a liquid or solid
Explanation:
When the pressure of a gas is increased, the average distance between the molecules decreases. In fact, if we assume that the temperature of the gas is kept constant, then we have

which means that the product between pressure and volume is constant: so, if the pressure increases, the volume decreases, and therefore the density of the gas increases (because density is inversely proportional to the volume,
)
Moreover, at very high pressure, the gas can turns into a liquid and eventually into a solid: in fact, as the average distance between the molecules decreases more and more, at some point they becomes so close to each other that the intermolecular forces start to be relevant, turning the gas into a liquid.
Answer:The greater the density of a medium, the slower the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely proportional to m, the mass of the oscillating object. The speed of sound in air is low, because air is easily compressible.
Explanation:
Answer:
1.7×10^5 ms-1
Explanation:
From
qE= qvB
q= charge on the electron
E = electric field
v= velocity
B= magnetic field
E= vB
v= E/B= 110×10^3/0.6
v= 1.7×10^5 ms-1
The smallest difference in voltage that can be resolved is referred to as the resolution. The resolution can be calculated with the following formula:
resolution=voltage range / digital range
The voltage range in our case is from -500mV to 500mV, which gives 1000mV.
The digital range on the other hand is 2^(number of bits).
It depends on what type of bit board we are using. If the ADC we are using is a 16 bit board, then 2^16=<span>65536.
So, the resolution is:
resolution=1000mV/</span><span>65536=0.015 mV</span>
Explanation:
Given that,
Mass of the object, m = 7.11 kg
Spring constant of the spring, k = 61.6 N/m
Speed of the observer, 
We need to find the time period of oscillation observed by the observed. The time period of oscillation is given by :

Time period of oscillation measured by the observer is :

So, the time period of oscillation measured by the observer is 5.79 seconds.