Answer:
Complete question:
c.If the current in the second coil increases at a rate of 0.365 A/s , what is the magnitude of the induced emf in the first coil?
a.
b.flux through each turn = Ф = 
c.magnitude of the induced emf in the first coil = e= 
Explanation:
a. rate of current changing =
[/tex]
Induced emf in the coil =e= 
For mutual inductance in which change in flux in one coil induces emf in the second coil given by the farmula based on farady law



b.
Flux through each turn=?
Current in the first coil =1.25 A
Number of turns = 20
using MI = NФ
flux through each turn = Ф = 
flux through each turn = Ф = 
c.
second coil increase at a rate = 0.365 A/s
magnitude of the induced emf in the first coil =?
using 

magnitude of the induced emf in the first coil = e= 
The mass of the first block will be three times the mass of the second block.
According to Newton's second law of motion, the force acting on a body is directly proportional to the acceleration as shown;


F is the acting force
m is the mass
a is the acceleration of the body
Given the following parameters
Constant force F = 1N
For the first block with the acceleration of "a"
1 = m₁a
a = m₁/1
m₁ = a .................1
For the second block, acceleration is thrice that of the first. This means;
F = m(3a)
1 = 3ma
..........................2
Divide both equations

From the calculation, we can conclude that the mass of the first block will be three times the mass of the second block.
Learn more here: brainly.com/question/19030143
There will be no way that to happen aton is a positive charge
In one of the greatest coincidences to arise on Brainly in quite some time, Choice-C is the correct choice for BOTH #15 and #16 .
Choice-C is the only situation in which the source is a different distance from each ear.
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.