1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
11

In a machine, work output is less than work input because some energy is converted into thermal energy. true or false.

Physics
2 answers:
tamaranim1 [39]3 years ago
7 0
True ..........................
blondinia [14]3 years ago
4 0

true because im smart like that

You might be interested in
Difference between relaxation time and collision time?
Black_prince [1.1K]
For the answer to the question above, let us first start with relaxation time. it is the absence of an external electric field, the free electrons in a metallic substance will move in random directions so that the resultant velocity of free electrons in any direction is equal to zero. While the Collision time it is<span> the mean </span>time<span> required for the direction of motion of an individual type particle to deviate through approximately as a consequence of </span>collisions<span> with particles of type.</span>
6 0
3 years ago
Read 2 more answers
A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.680 Hz. The pendulum ha
sineoko [7]

Answer:

Therefore, the moment of inertia is:

I=0.37 \: kgm^{2}

Explanation:

The period of an oscillation equation of a solid pendulum is given by:

T=2\pi \sqrt{\frac{I}{Mgd}} (1)

Where:

  • I is the moment of inertia
  • M is the mass of the pendulum
  • d is the distance from the center of mass to the pivot
  • g is the gravity

Let's solve the equation (1) for I

T=2\pi \sqrt{\frac{I}{Mgd}}

I=Mgd(\frac{T}{2\pi})^{2}

Before find I, we need to remember that

T = \frac{1}{f}=\frac{1}{0.680}=1.47\: s

Now, the moment of inertia will be:

I=2*9.81*0.340(\frac{1.47}{2\pi})^{2}  

Therefore, the moment of inertia is:

I=0.37 \: kgm^{2}

I hope it helps you!

7 0
3 years ago
A new ride being built at an amusement park includes a vertical drop of 71.6 meters. Starting from rest, the ride vertically dro
Allisa [31]

Answer: 2.6x107

Explanation:

3 0
3 years ago
An airplane weighing 11,000 N climbs to a
Gennadij [26K]

The power in horsepower is 40.1 hp

Explanation:

We start by calculating the work done by the airplane during the climb, which is equal to its change in gravitational potential energy:

W=(mg)\Delta h

where

mg = 11,000 N is the weight of the airplane

\Delta h = 1.6 km = 1600 m is the change in height

Substituting,

W=(11,000)(1600)=17.6\cdot 10^6 J

Now we can calculate the power delivered, which is given by

P=\frac{W}{t}

where

W=17.6\cdot 10^6 J is the work done

t=9.8 min \cdot 60 = 588 s is the time taken

Substituting,

P=\frac{17.6\cdot 10^6 J}{588}=2.99\cdot 10^4 W

Finally, we can convert the power into horsepower (hp), keeping in mind that

1 hp = 746 W

Therefore,

P=\frac{2.99\cdot 10^4}{746}=40.1 hp

Learn more about power:

brainly.com/question/7956557

#LearnwithBrainly

8 0
3 years ago
A spring is used to stop a 50-kg package which is moving down a 20º incline. The spring has a constant k = 30 kN/m and is held b
Elina [12.6K]

Answer:

0.3 m

Explanation:

Initially, the package has both gravitational potential energy and kinetic energy.  The spring has elastic energy.  After the package is brought to rest, all the energy is stored in the spring.

Initial energy = final energy

mgh + ½ mv² + ½ kx₁² = ½ kx₂²

Given:

m = 50 kg

g = 9.8 m/s²

h = 8 sin 20º m

v = 2 m/s

k = 30000 N/m

x₁ = 0.05 m

(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²

x₂ ≈ 0.314 m

So the spring is compressed 0.314 m from it's natural length.  However, we're asked to find the additional deformation from the original 50mm.

x₂ − x₁

0.314 m − 0.05 m

0.264 m

Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.

8 0
3 years ago
Other questions:
  • Which processes transfer energy from the core to the photosphere
    5·1 answer
  • Trace fossils are much more common than body fossils. Which of the following best explains why trace fossils are more common?
    12·1 answer
  • The combined electrical resistance R of two resistors R_1 and R_2, connected in parallel, is given by 1/R = 1/R_1 + 1/R_2 where
    9·1 answer
  • A brass bar, density 9.87g/cm3, has a volume of 20.25cm3. What is the mass of this brass bar?
    8·1 answer
  • Two small objects, with masses m and m, are originally a distance r apart, and the gravitational force on each one has magnitude
    15·2 answers
  • A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction has a speed of
    14·1 answer
  • The temperature rises from 25.00°C to 29.00°C in a bomb calorimeter when 3.50 g of sucrose undergoes combustion in a bomb calori
    11·1 answer
  • Which statement best describes why the Milky Way is shaped a certain way?
    5·1 answer
  • You leave a pastry in the refrigerator on a plate and ask your roommate to take it out before youget home so you can eat it at r
    15·1 answer
  • How do the nuclei of covalently bonded atoms help keep the bond together.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!