Answer:
Explanation:
initial momentum = .36 kg.m.s⁻¹
negative impulse = force x time = .02 x 12 = .24 kg.m.s⁻¹
final momentum - initial momentum = impulse
final momentum = initial momentum + impulse
= .36 - .24
= .12 kg.m.s⁻¹
Answer:
Speed = 575 m/s
Mechanical energy is conserved in electrostatic, magnetic and gravitational forces.
Explanation:
Given :
Potential difference, U = 
Mass of the alpha particle, 
Charge of the alpha particle is, 
So the potential difference for the alpha particle when it is accelerated through the potential difference is

And the kinetic energy gained by the alpha particle is

From the law of conservation of energy, we get





The mechanical energy is conserved in the presence of the following conservative forces :
-- electrostatic forces
-- magnetic forces
-- gravitational forces
This equation will be balanced if the x is a 2 because there are two sodiums on the reactants sides so there must be two sodiums on the products side
Hope this helps
Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum




