Before you even look at the questions, look over the graph, so you know what kind of information is there.
The x-axis is "time". OK. You know that as the graph moves from left to right, it shows what's happening as time goes on.
The y-axis is "speed" of something. OK. When the graph is high, the thing is moving fast. When the graph is low, the thing is moving slow. When the graph slopes up, the thing is gaining speed. When the graph slopes down, the thing is slowing down. When the graph is flat, the speed isn't changing, so the thing is moving at a constant speed.
NOW you can look at the questions.
OMG ! It's only ONE question: What's happening from 'c' to 'd' ? Well I don't know. Perhaps we can figure it out if we LOOK AT THE GRAPH !
-- Between c and d, the graph is flat. The speed is not changing. It's the same speed at d as it was back at c .
What speed is it ?
-- Look back at the y-axis. The speed at the height of c and d is 'zero' .
-- The 2nd and 4th choices are both correct. From c to d, <em>the speed is constant</em>. The constant speed is zero. <em>The car is not moving</em>.
Answer:
25 m/s
Explanation:
from the question you van see that some detail is missing, however i found this same question using internet search engines on: 'https://www.chegg.com/homework-help/questions-and-answers/light-rail-passenger-trains-provide-transportation-within-cities-speed-slow-nearly-constan-q5808369'
here is the complete question:
'Light-rail passenger trains that provide transportation within and between cities speed up and slow down with a nearly constant (and quite modest) acceleration. A train travels through a congested part of town at 7.0m/s . Once free of this area, it speeds up to 12m/s in 8.0 s. At the edge of town, the driver again accelerates, with the same acceleration, for another 16 s to reach a higher cruising speed. What is the final Speed?'
SOLUTION
initial speed (u) = 7 m/s
final speed (v) = 13 m/s
initial acceleration time (t1) = 8 s
final acceleration time (t2) = 16 s
what is the higher cruising speed?
acceleration = 
acceleration =
= 0.75 m/s^{2}
since the train accelerates at the same rate, the increase in speed will be = acceleration x time (t2)
= 0.75 x 16 = 12 m/s
therefore the higher cruising speed = increase in speed + initial speed
= 12 + 13 = 25 m/s
Answer:
time constant will decrease and steady state current will decrease on increasing the resistance
Explanation:
As we know that the EMF of cell is E which is used to connected across a resistor and an inductor.
So we will have

here we know that

now here we have

so if we increase the value of resistance of the wire then the time constant will decrease
and hence it will take less time to reach near the steady state value
also the steady state current will be smaller in that case
A hypothesis is an educated prediction that can be tested.
thank you so much for the schlatt