Answer:
420 L
Explanation:
Applying Boyle's Law,
PV = P'V'.................... Equation 1
Where P = Initial pressure, P' = Final pressure, V = Initial volume, V' = Final volume.
make V' the subject of the equation
V' = PV/P'.................... Equation 2
From the question,
Given: P = 720 mmHg, V = 350 L, P' = 600 mmHg
Substitute these values into equation 2
V' = (720×350)/600
V' = 252000/600
V' = 420 L
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:

The mechanical advantage of a machine is the ratio of the force produced by the machine to the force applied to it. Therefore, we may calculate the applied force using:
Mechanical advantage = force by machine / force applied
6 = 2 / force applied
Force applied = 1/3
Thus, the distance that the effort must move will be 1/3 inch
Answer:
The Gravitational Force between the 2 masses is approximately 1.209x10^32 Newton’s
Explanation:
Answer:
D
Explanation:
Option A, B and C are true about energy conversion devices, only option D is NOT true about energy conversion devices.