Answer:
(x,y) = (8,7)
Step-by-step explanation:
Solve equation [2] for the variable x
[2] x = y + 15
Plug this in for variable x in equation [1]
[1] (y +15) + y = 1
[1] 2y = -14
Solve equation [1] for the variable y
[1] 2y = - 14
[1] y = - 7 By now we know this much :
x = y+15
y = -7
// Use the y value to solve for x
x = (-7)+15 = 8
Solution :
{x,y} = {8,-7}
Answer:
f
Step-by-step explanation:
Answer:
It's 8
Step-by-step explanation:
![16 ^{ \frac{3}{4} } = \sqrt[4]{16 ^{3} } = \sqrt[4]{2 ^{4 \times 3} } = 2^{ \frac{12}{4} } = 2^{3} = 8](https://tex.z-dn.net/?f=%2016%20%5E%7B%20%5Cfrac%7B3%7D%7B4%7D%20%7D%20%20%3D%20%20%5Csqrt%5B4%5D%7B16%20%5E%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B4%5D%7B2%20%5E%7B4%20%5Ctimes%203%7D%20%7D%20%3D%202%5E%7B%20%5Cfrac%7B12%7D%7B4%7D%20%7D%20%20%20%3D%202%5E%7B3%7D%20%20%3D%208)
Peter reflecting trapezoid ABCD across the y-axis would not change the degree measurement of angle A
The degree measurement of angle A is 115 degrees
<h3>How to determine the degree measurement of angle A?</h3>
From the question, we have:
A = 115 degrees
B = 65 degrees
The transformation is a reflection across the y-axis
Reflection is a rigid transformation; and it does not change the angle measure or side lengths.
After the transformation; we have:
A = 115 degrees
B = 65 degrees
Hence, the degree measurement of angle A is 115 degrees
Read more about transformation at:
brainly.com/question/4289712
Answer:
b = 8
c = 16
Step-by-step explanation:
From the given right triangle,
a =
, m(∠B) = 30°
By applying sine rule in the given triangle,
cos(B) = 
cos(B) = 
cos(30°) = 

c = 16
Further we apply tangent rule,
tan(B) = 
tan(30°) = 

b = 8