-- loud sounds
-- bright lights
-- strong radio signals
-- Slinkies that can pinch you painfully
-- a tsunami in the ocean
-- earthquakes above Richter 5 or 6
Using a punnet square,
h h
H Hh Hh
h hh hh
The offspring will be 50% Heterozygous dominant and 50% homozygous recessive.
D. distance = 23 m, displacement = + 1 m
Explanation:
Let's remind the difference between distance and displacement:
- distance is a scalar, and is the total length covered by an object, counting all the movements in any direction
- displacement is a vector connecting the starting point and the final point of a motion, so its magnitude is given by the length of this vector, and its direction is given by the direction of this vector.
In this case, the distance covered by Karen is given by the sum of all its movements:

The displacement instead is given by the difference between the final point (1.0 m in front of the starting line) and the starting point (the starting line, 0 m):

Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Answer:
High density D answers to your questions