Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball, 
After the collision, final momentum 
Using the conservation of momentum as :


v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.
Answer:571.09 kJ
Explanation:
Given
Temperature of cooling water from engine exit
After Passing through the radiator its temperature decreases to 
specific heat of water
Volume of water 
density of water 
Thus mass of water
Heat transferred to the surrounding is equal to heat absorbed by cooling water




Answer:
Explanation:
Formula and givens
- λ = c / f
- λ is the wavelength
- c = the speed of light
- f = the frequency
- c = 3*10^8
- f = 7.89 * 10^14
λ = ?
Solution
λ = 3*10^8 / 7.89*10^14
λ = 3*10^8/7.89*10^14
λ = 2.36 * 10^7
λ = 236 nanometers. What you use as your solution depends on what what you have been taught.