Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
The Berlin Airlift is best described as the aircraft used to delivered needed food and supplies to the city of Berlin through the air because all other routes were blocked by the Soviet Union.
<h3>What is Berlin Airlift?</h3>
The Berlin airlift was a 1940s military operation that supplied West Berlin with food and other vital goods by air after the Soviet Union blockaded the city.
Thus, the Berlin Airlift is best described as the aircraft used to delivered needed food and supplies to the city of Berlin through the air because all other routes were blocked by the Soviet Union.
Learn more about Berlin Airlift here: brainly.com/question/1104371
#SPJ1
Answer:
I think the answer is
C) iron nails are attracted towards all materials
Energy cannot be created nor be destroyed