The gas would also decrease in size since the container lost gas to decrease the size of the container.
Answer:
4.5g/cm^3
Explanation:
Here, Mass(m)=67.5g
Volume(v)=15cm^3
Now, According to formula,
Density(p)=m/v
=67.5/15
=4.5g/cm^3
Answer:
When the volume increases or when the temperature decreases
Explanation:
The ideal gas equation states that:

where
p is the gas pressure
V is the volume
n is the number of moles of gas
R is the gas constant
T is the gas temperature
Assuming that we have a fixed amount of gas, so n is constant, we can rewrite the equation as

which means the following:
- Pressure is inversely proportional to the volume: this means that the pressure decreases when the volume increases
- Pressure is directly proportional to the temperature: this means that the pressure decreases when the temperature decreases
Inertia
the awnswer is inertia b
<u>Answer:</u> 0.774 g/cm^3
<u>Explanation:</u>
Density is measured in g/cm^3
480g / 620cm^3 = 0.774 g/cm^3
Does this help? Sorry if not.