Answer: when the wave encounters something, it can bounce (reflection) or be bent (refraction). In fact, you can "trap" waves by making them bounce back and forth between two or more surfaces. Musical instruments take advantage of this; they produce pitches by trapping sound waves.
Explanation: Any bunch of sound waves will produce some sort of noise. But to be a tone - a sound with a particular pitch - a group of sound waves has to be very regular, all exactly the same distance apart. That's why we can talk about the frequency and wavelength of tones.
Yes you can make sunglasses from 3d glasses
The ideal mechanical advantage (IMA) can be determined by the following equation:
IMA= Input distance/Output distance
The Input distance and Output distance are:
Input distance=220 meters
Output distance=110 meters
When you substitute in the equation of the ideal mechanical advantage (IMA), you obtain:
IMA= Input distance/Output distance
IMA= 220 meters/110 meters
IMA=2
The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Answer:
The driver was not telling the truth because it is not possible for a car to hit another car from behind and generate a force to the sides that deflects it from its path.
Explanation:
First, we analyze the driver's statement.
The driver when arriving at the curve, is collided from behind by another car and deviates from his path and crashes into a tree. For the car to go to the tree there must be a force towards the tree.
The net force that causes the car to deviate must be formed by the sum of the motion vector of the first car plus the force that is directed towards the tree.
Here we verify that a car hitting from behind will not generate a force to the sides, but will generate a force in the same direction that the car moves, forward.