At the ground the ball will always have velocity along the direction of gravity. If upward motion is taken positive it will always have negative velocity at the ground because, if the ball was given an initial upward velocity then gravity will decelerate it and bring it down with a negative final velocity. If the ball is given an initial downward velocity then the ball will be further accelerated by gravity in the downward direction only, again maintaining negative direction. The magnitude however in both cases will be different. the final velocity at the ground will have higher magnitude in case of elevator moving downwards.
Answer: Here this will help you..
Explanation:
1 kg-m/s to kilogram-force meter/second = 1 kilogram-force meter/second
5 kg-m/s to kilogram-force meter/second = 5 kilogram-force meter/second
10 kg-m/s to kilogram-force meter/second = 10 kilogram-force meter/second
20 kg-m/s to kilogram-force meter/second = 20 kilogram-force meter/second
30 kg-m/s to kilogram-force meter/second = 30 kilogram-force meter/second
40 kg-m/s to kilogram-force meter/second = 40 kilogram-force meter/second
50 kg-m/s to kilogram-force meter/second = 50 kilogram-force meter/second
75 kg-m/s to kilogram-force meter/second = 75 kilogram-force meter/second
100 kg-m/s to kilogram-force meter/second = 100 kilogram-force meter/second
70-10/70 x 100 percentage change ....
60/70, 6/7 fract change