Mass/volume is density so it’s 562g/72cm^3 so it’s roughly 7.805g per cubic centimeter
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
The sun's energy influences climate in various ways. For example the latitudes at the equator receive more energy from the sun and therefore have warmer temperatures, On the other hand the sun's energy influences precipitation in a climate by driving the water cycle which determines precipitation.The sun is what makes the water cycle take place. That is the sun provides energy or heat to the earth; the heat causes liquid and frozen water to evaporate into water vapor gas, which rises high in the sky to form clouds ( precipitation), that in turn give us rain
Answer:

Explanation:
= Length of wire = 65 m
= Initial current = 1.8 A
= Final current = 2.9 A
We know

and


so

The length of the wire remaining on the spool is
.