Answer:
For the first one its about 25 feet
Explanation:
Answer:
impulse = 8820 kg·
or 8820 N·s
Explanation:
Impulse J is equal to the average force
multiplied by the elapsed time Δt or in equation form, J =
Δt
As long as your force of 450 N is constant then that value is your average force
and your elapsed time is 19.4 seconds.
Multiply these values.
You will get an impulse of 8820 kg·
or 8820 N·s.
Answer:
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Explanation:
Total heat content of the fat = heat content of water +heat content of the lipids
Let it be Q
the Q= (mcΔT)_lipids + (mcΔT)_water
total mass of fat M= 0.63 Kg
Q= heat supplied = 100 W in 5 minutes
ΔT= 20°C
c_lipid= 1700J/(kgoC)
c_water= 4200J/(kgoC)
then,

solving the above equation we get
m= 0.46 kg
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Answer:
v ’= 21.44 m / s
Explanation:
This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s
f ’= f (v + v₀) / (v-
)
where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer
in this exercise both the source and the observer are moving, we will assume that both have the same speed,
v₀ = v_{s} = v ’
we substitute
f ’= f (v + v’) / (v - v ’)
f ’/ f (v-v’) = v + v ’
v (f ’/ f -1) = v’ (1 + f ’/ f)
v ’= (f’ / f-1) / (1 + f ’/ f) v
v ’= (f’-f) / (f + f’) v
let's calculate
v ’= (3400 -3000) / (3000 +3400) 343
v ’= 400/6400 343
v ’= 21.44 m / s
Answer:
Conservation principles tell us that some<u> quantity, quality, or aspect remains constant through change. </u>
Explanation: