1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
11

A 13.4-mH inductor carries a current i =

{max}" align="absmiddle" class="latex-formula"> sin ωt, with I_{max} = 4.80 A and f = ω/2π = 60.0Hz. What is the self-induced emf as a function of time? (Express your answer in terms of t where e m f is in volts and t is in seconds. Do not include units in your expression.)

Physics
1 answer:
Digiron [165]3 years ago
6 0

The voltage across an inductor ' L ' is

V = L · dI/dt .

I(t) = I(max) sin(ωt)

dI/dt = I(max) ω cos(ωt)

V = L · ω · I(max) cos(ωt)

L = 1.34 x 10⁻² H

ω = 2π · 60 = 377 /sec

I(max) = 4.80 A

V = L · ω · I(max) cos(ωt)

V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)

<em>V = 24.25 cos(377 t)</em>

V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.

You might be interested in
HELP SCIENCE 8 15 pts
Bingel [31]

Answer:

scalar is having only magnitude, not direction.

Vector is a quantity having direction as well as magnitude, especially as determining the position of one point in space relative to another.

you find the differences of both of them i actually kinda gave it to you.

Explanation:

4 0
3 years ago
In general, sound<br> travels faster through
BartSMP [9]

Answer:

solids

Explanation:

5 0
3 years ago
Suppose you put an ice cube into a cup of hot tea. In what direction does energy in the form of heat flow? What happens to the i
Semenov [28]

Answer:

The energy flows between the ice and the tea equally. The table below shows the temperatures of several different objects made of the same material.

6 0
3 years ago
A batter hits a foul ball. The 0.140-kg baseball that was approaching him at 40.0 m/s leaves the bat at 30.0 m/s in a direction
lara31 [8.8K]
<h3>Answer</h3><h3>7 Ns</h3><h3>Explanation</h3>

Given in the question,

mass of foul ball = 0.140 kg

initial speed with which ball was hit with the bat = 30 m/s

final speed  = 40 m/s

According to the scenario the whole scene is making a right angle triangle

So, to the solve the question we will use pythagorus theorem

<h3>Hypotenuse² = base² + height²</h3>

Here,

Hypotenuse= Magnitude of impulse

Base = 1st change of momentum

height = 2nd change of momentum

 

1st impulse (1st change of momentum)

p = m(1)v(1) = (0.14 kg)(40.0 m/s) = 5.6 kg m / s = 5.6 N s

2nd impulse (2nd change of momentum)

p = m(2)v(2) = (0.14 kg)(30.0 m/s) = 4.2 kg m / s = 4.2 N s

Magnitude of impulse (hypotenuse of triangle)

impulse² = (5.6)² + (4.2)²

impulse² = 31.36 + 17.64

impulse² = 49

impulse² = √49

impulse = 7.0 N s

7 0
3 years ago
A body which has surface area 5cm² and temperature of 727°C radiates 300J of energy in one minute. Calculate it's emissivity giv
cestrela7 [59]
<h2>Answer: 0.17</h2>

Explanation:

The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":  

P=\sigma A T^{4} (1)  

Where:  

P=300J/min=5J/s=5W is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 1W=\frac{1Joule}{second}=1\frac{J}{s}

\sigma=5.6703(10)^{-8}\frac{W}{m^{2} K^{4}} is the Stefan-Boltzmann's constant.  

A=5cm^{2}=0.0005m^{2} is the Surface area of the body  

T=727\°C=1000.15K is the effective temperature of the body (its surface absolute temperature) in Kelvin.

However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close.  So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:

P=\sigma A \epsilon T^{4} (2)  

Where \epsilon is the body's emissivity

(the value we want to find)

Isolating \epsilon from (2):

\epsilon=\frac{P}{\sigma A T^{4}} (3)  

Solving:

\epsilon=\frac{5W}{(5.6703(10)^{-8}\frac{W}{m^{2} K^{4}})(0.0005m^{2})(1000.15K)^{4}} (4)  

Finally:

\epsilon=0.17 (5)  This is the body's emissivity

3 0
3 years ago
Other questions:
  • The voltage across a parallel-plate capacitor with area A = 820 cm2 and separation d = 5 mm varies sinusoidally as V = (14 mV)co
    8·1 answer
  • A gravitational blank exist between you and every object in the universe
    15·2 answers
  • What is the value of work done on an object when a 0.1x102-newton force moves it 30 meters and the angle between the force and t
    12·1 answer
  • A meter stick with a mass of 0.155 kg is pivoted about one end so it can rotate without friction about a horizontal axis. The me
    5·1 answer
  • PLEASE PLEASE PLEASE HELP!!!! WILL MARK BRAINILIEST!!!!!!!!!!!
    9·1 answer
  • Conservation of energy
    15·1 answer
  • Volleyball took some of its characteristics from handball and tennis <br><br> True<br> False
    14·1 answer
  • A crane lifts a 425 kg steel beam vertically upward a distance of 66 m. How much work does the crane do on the beam if the beam
    11·1 answer
  • A driver of a car traveling at 25 m/s applies the brake, causing a uniform acceleration of -3 m/s2. A) How long does it take the
    15·1 answer
  • An object of the same mass has three different weights at different times.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!