Answer:if 1 m = 100 cm then there should be 200 cm in m^2
Explanation:
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
Answer:
e. 1.2 x 10²³
Explanation:
According to the problem, The current equation is given by:

Here time is in seconds.
Consider at t=0 s the current starts to flow due to battery and the current stops when the time t tends to infinite.
The relation between current and number of charge carriers is:

Here the limits of integration is from 0 to infinite. So,


q = 1.90 x 10⁴ C
Consider N be the total number of charge carriers. So,
q = N e
Here e is electronic charge and its value is 1.69 x 10⁻¹⁹ C.
N = q/e
Substitute the suitable values in the above equation.

N = 1.2 x 10²³