1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
2 years ago
5

Help PLEASE

Physics
1 answer:
Travka [436]2 years ago
8 0

Answer:

d I believe so

Explanation:

d yes?????

You might be interested in
after a circuit has been turned off, so it is important to make sure they are discharged before you touch them. Suppose a 120 mF
Snezhnost [94]

Answer:

The time is 110.16\times10^{-3}\ sec

Explanation:

Given that,

Capacitor = 120 μF

Voltage = 150 V

Resistance = 1.8 kΩ

Current = 50 mA

We need to calculate the discharge current

Using formula of discharge current

i_{0}=\dfrac{V_{0}}{R}

Put the value into the formula

i_{0}=\dfrac{150}{1.8\times10^{3}}

i_{0}=83.3\times10^{-3}\ A

We need to calculate the time

Using formula of current

i=\dfrac{V_{0}}{R}e^{\frac{-t}{RC}}

Put the value into the formula

50=\dfrac{150}{1.8\times10^{3}}e^{\frac{-t}{RC}}

\dfrac{50}{83.3}=e^{\frac{-t}{RC}}

\dfrac{-t}{RC}=ln(0.600)

t=0.51\times1.8\times10^{3}\times120\times10^{-6}

t=110.16\times10^{-3}\ sec

Hence, The time is 110.16\times10^{-3}\ sec

4 0
3 years ago
To test the performance of its tires, a car
velikii [3]

<u>Answer</u>:

The coefficient of  static friction between the tires and the road is 1.987

<u>Explanation</u>:

<u>Given</u>:

Radius of the track, r =  516 m

Tangential Acceleration a_r=  3.89 m/s^2

Speed,v =  32.8 m/s

<u>To Find:</u>

The coefficient of  static friction between the tires and the road = ?

<u>Solution</u>:

The radial Acceleration is given by,

a_{R = \frac{v^2}{r}

a_{R = \frac{(32.8)^2}{516}

a_{R = \frac{(1075.84)}{516}

a_{R = 2.085 m/s^2

Now the total acceleration is

\text{ total acceleration} = \sqrt{\text{(tangential acceleration)}^2 +{\text{(Radial acceleration)}^2

=>= \sqrt{ (a_r)^2+(a_R)^2}

=>\sqrt{ (3.89 )^2+( 2.085)^2}

=>\sqrt{ (15.1321)+(4.347)^2}

=>19.4791 m/s^2

The frictional force on the car will be f = ma------------(1)

And the force due to gravity is W = mg--------------------(2)

Now the coefficient of  static friction is

\mu =\frac{f}{W}

From (1) and (2)

\mu =\frac{ma}{mg}

\mu =\frac{a}{g}

Substituting the values, we get

\mu =\frac{19.4791}{9.8}

\mu =1.987

8 0
3 years ago
sonic is sliding down a frictionless 15m tall hill. He starts at the top with a velocity of 10m/s. At the bottom of the hill he
podryga [215]

Answer:

The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m

Energy approach has been used to sole the problem.

The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring

The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved

Explanation:

The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.

As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .

x = compression of the spring = 0.89

5 0
3 years ago
A swing has a period of 10 seconds. What is its frequency ?
kow [346]

Frequency = 1 / (period)

Frequency = 1 / (10 seconds) = (1/10) ( / second) = 0.1 per second = <em>0.1 Hz</em>.


4 0
3 years ago
From a vantage point very close to the track at a stock car race, you hear the sound emitted by a moving car. You detect a frequ
V125BC [204]

Answer:

55.8 m/s

Explanation:

f = Actual frequency of sound emitted by car

f' = frequency observed when the car moves = (0.86)f

V = Speed of sound = 343 m/s

v = Speed of car

Frequency observed is given as

f' = \frac{Vf}{V+v}

(0.86) = \frac{(343)}{343 + v}\\(0.86) = \frac{(343)}{343 + v}\\294.98 + (0.86) v = 343 \\v = 55.8 ms^{-1}

6 0
3 years ago
Other questions:
  • The temperature of a lead fishing weight rises from 26∘c to 38∘c as it absorbs 11.3 j of heat. what is the mass of the fishing w
    15·1 answer
  • A velocity selector is built with a magnetic field of magnitude 5.2 T and an electric field of strength 4.6 × 10 ^ 4 N/C. The di
    10·1 answer
  • Which are examples of projectile motion?
    13·1 answer
  • WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!
    11·1 answer
  • Determine the nuclear radius (in fm) for each of the following nuclei.
    7·1 answer
  • Because of convection, the warmest air in a room
    11·1 answer
  • A spring of negligible mass and force constant k = 410 N/m is hung vertically, and a 0.200 kg pan is suspended from its lower en
    10·1 answer
  • I will mark you brainlist!
    10·1 answer
  • A 8.37*10^-5 F capacitor has 2.15*10^-4 C of charge on its plates. How much energy is stored on the capacitor
    12·1 answer
  • What is radioactivity?​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!