1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
3 years ago
9

Study the diagram. Point C identifies the _____ of the wave.

Physics
2 answers:
zloy xaker [14]3 years ago
6 0
Answer:TroughExplanation: There are several quantities of a wave that are indicated in the figure:A) This is the point of .
Sonbull [250]3 years ago
5 0

Answer:

Amplitude : The height of the wave from the origin to the crest/peak or trough

Explanation:

You might be interested in
Please help I don't know how to answer these questions!
Yuki888 [10]

1) The potential energy is the most at the highest position and the least at the equilibrium position

2) The kinetic energy is the most at the equilibrium position and  the least at the highest position

Explanation:

1)

The potential energy of an object is the energy possessed by the object due to its position in a gravitational field; mathematically, it is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the pendulum in this problem, m is the mass of the bob, and h is the height of the above relative to the ground. We see from the formula that the potential energy is directly proportional to the height:

PE\propto h

This means that:

  • The potential energy is the most when the bob is at the highest position
  • The potential energy is the least when the bob is at the equilibrium position,  which is the lowest position

2)

We can solve this part by applying the law of conservation of energy: in fact, the total mechanical energy of the pendulum (sum of potential and kinetic energy) is constant at any time during the motion,

E=KE+PE=const.

where KE is the kinetic energy.

From the equation above, we observe that:

  • When PE is maximum, KE must be at minimum
  • When PE is minimum, KE must be maximum

Therefore, this implies that:

  • The kinetic energy is the most when the potential energy is the least, i.e. at the equilibrium position
  • The kinetic energy is the least when the potential energy is the most, i.e. at the highest position

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

6 0
3 years ago
Under the assumption that the beam is a rectangular cantilever beam that is free to vibrate, the theoretical first natural frequ
BartSMP [9]

Answer:

a) Δf = 0.7 n , e)   f = (15.1 ± 0.7) 10³ Hz

Explanation:

This is an error about the uncertainty or error in the calculated quantities.

Let's work all the magnitudes is the SI system

The frequency of oscillation is

        f = n / 2π L² √( E /ρ)

where n is an integer

Let's calculate the magnitude of the oscillation

       f = n / 2π (0.2335)² √ (210 10⁹/7800)

       f = n /0.34257 √ (26.923 10⁶)

       f = n /0.34257    5.1887 10³

       f = 15.1464 10³ n

a) We are asked for the uncertainty of the frequency (Df)

       Δf = | df / dL | ΔL + df /dE ΔE + df /dρ Δρ

in this case no  error is indicated in Young's modulus and density, so we will consider them exact

       ΔE = Δρ = 0

       Δf = df /dL  ΔL

       df = n / 2π   √E /ρ   | -2 / L³ | ΔL

       df = n / 2π 5.1887 10³ | 2 / 0.2335³) 0.005 10⁻³

       df = n 0.649

Absolute deviations must be given with a single significant figure

        Δf = 0.7 n

b, c) The uncertainty with the width and thickness of the canteliver is associated with the density

 

In your expression there is no specific dependency so the uncertainty should be zero

The exact equation for the natural nodes is

          f = n / 2π L² √ (E e /ρA)

where A is the area of ​​the cantilever and its thickness,

In this case, they must perform the derivatives, calculate and approximate a significant figure

        Δf = | df / dL | ΔL + df /de  Δe + df /dA  ΔA

        Δf = 0.7 n + n 2π L² √(E/ρ A) | ½  1/√e | Δe

               + n / 2π L² √(Ee /ρ) | 3/2 1√A23  |

the area is

        A = b h

        A = 24.9  3.3  10⁻⁶

        A = 82.17 10⁻⁶ m²

        DA = dA /db ΔB + dA /dh Δh

        dA = h Δb + b Δh

        dA = 3.3 10⁻³ 0.005 10⁻³ + 24.9 10⁻³ 0.005 10⁻³

        dA = (3.3 + 24.9) 0.005 10⁻⁶

        dA = 1.4 10⁻⁷ m²

let's calculate each term

         A ’= n / 2π L² √a (E/ρ A) | ½ 1 /√ e | Δe

         A ’= n/ 2π L² √ (E /ρ)      | ½ 1 / (√e/√ A) |Δe

        A ’= 15.1464 10³ n ½ 1 / [√ (24.9 10⁻³)/ √ (81.17 10⁻⁶)] 0.005 10⁻³

        A '= 0.0266  n

        A ’= 2.66 10⁻² n

       A ’’ = n / 2π L² √ (E e /ρ) | 3/2  1 /√A³ |

       A ’’ = n / 2π L² √(E /ρ) √ e | 3/2  1 /√ A³ | ΔA

       A ’’ = n 15.1464 10³ 3/2 √ (24.9 10⁻³) /√ (82.17 10⁻⁶) 3 1.4 10⁻⁷

       A ’’ = n 15.1464 1.5 1.5779 / 744.85 1.4 10⁴

       A ’’ = 6,738 10²

we write the equation of uncertainty

     Δf = n (0.649 + 2.66 10⁻² + 6.738 10²)

The uncertainty due to thickness is

    Δf = 3 10⁻² n

The uncertainty regarding the area, note that this magnitude should be measured with much greater precision, specifically the height since the errors of the width are very small

     Δf = 7 10² n

 d)    Δf = 7 10² n

e) the natural frequency n = 1

       f = (15.1 ± 0.7) 10³ Hz

7 0
3 years ago
There are four charges, each with a magnitude of 4.25 C. Two are positive and two are negative. The charges are fixed to the cor
VMariaS [17]

Answer:

 F = 7.68 10¹¹ N,  θ = 45º

Explanation:

In this exercise we ask for the net electric force. Let's start by writing the configuration of the charges, the charges of the same sign must be on the diagonal of the cube so that the net force is directed towards the interior of the cube, see in the attached numbering and sign of the charges

The net force is

          F_ {net} = F₂₁ + F₂₃ + F₂₄

bold letters indicate vectors. The easiest method to solve this exercise is by using the components of each force.

let's use trigonometry

          cos 45 = F₂₄ₓ / F₂₄

          sin 45 = F_{24y) / F₂₄

          F₂₄ₓ = F₂₄ cos 45

          F_{24y} = F₂₄ sin 45

let's do the sum on each axis

X axis

          Fₓ = -F₂₁ + F₂₄ₓ

          Fₓ = -F₂₁₁ + F₂₄ cos 45

Y axis  

         F_y = - F₂₃ + F_{24y}

         F_y = -F₂₃ + F₂₄ sin 45

They indicate that the magnitude of all charges is the same, therefore

         F₂₁ = F₂₃

Let's use Coulomb's law

         F₂₁ = k q₁ q₂ / r₁₂²

       

the distance between the two charges is

         r = a

         F₂₁ = k q² / a²

we calculate F₂₄

           F₂₄ = k q₂ q₄ / r₂₄²

the distance is

           r² = a² + a²

           r² = 2 a²

         

we substitute

           F₂₄ = k  q² / 2 a²

we substitute in the components of the forces

          Fx = - k \frac{q^2}{a^2} +  k \frac{q^2}{2 a^2}  \ cos 45

          Fx = k \frac{q^2}{a^2}  ( -1 + ½ cos 45)

          F_y = k \frac{q^2}{a^2} ( -1 +  ½ sin 45)    

         

We calculate

            F₀ = 9 10⁹ 4.25² / 0.440²

            F₀ = 8.40 10¹¹ N

       

            Fₓ = 8.40 10¹¹ (½ 0.707 - 1)

            Fₓ = -5.43 10¹¹ N

         

remember cos 45 = sin 45

             F_y = - 5.43 10¹¹  N

We can give the resultant force in two ways

a) F = Fₓ î + F_y ^j

          F = -5.43 10¹¹ (i + j)   N

b) In the form of module and angle.

For the module we use the Pythagorean theorem

          F = \sqrt{F_x^2 + F_y^2}

          F = 5.43 10¹¹  √2

          F = 7.68 10¹¹ N

in angle is

           θ = 45º

7 0
3 years ago
A wildlife researcher is tracking a flock of geese. The geese fly 4.0 km due west, then turn toward the north by 40º and fly ano
Kobotan [32]

Wildlife researcher starts from a and then reaches b, he turns towards north 40 degree to move towards c.

Total displacement is ac

Total horizontal displacement = 4+4 cos40 =7.06 km

Total vertical displacement = 4 sin40 =2.57 km

Total displacement = \sqrt{7.06^2+2.57^2} = 7.51 km

7 0
3 years ago
The labeled images each represent the wave patterns found in the electromagnetic wave spectrum. which of these images are correc
Phantasy [73]
Energy E of EM radiation is given by the equation E=hf, where h is Planck's constant and f is frequency. It means energy E and frequency f are proportional so as we increase the frequency, energy also increases. Also, the relationship between the wavelength and frequency is c=λ*f where λ is the wavelength and f is frequency and c is the speed of light. This tells us the wavelength and frequency are inversely proportional. So as we increase the frequency the wavelength is getting smaller. So as we go from left to right the frequency increases, energy also increases and the wavelength is decreasing. Or, on the left side we should have low frequency, low radiant energy, and long wavelength. On the right side we should have high frequency, high radiant energy and low wavelength. That is the third graph. 
5 0
3 years ago
Other questions:
  • What is the weight (in newtons) of a bowling ball that has a mass of 3 kilograms?
    14·1 answer
  • 2.00 W/m2 passes through the pupil of one of your eyes and eventually falls on your retina. The radius of the pupil is controlle
    14·1 answer
  • Lena is studying the properties of light in a laboratory. If she increases the amplitude of the light waves she is studying, wha
    11·1 answer
  • What is another name for matter/material
    11·1 answer
  • D.<br>The rear wheels of tractors are wider.​
    12·1 answer
  • What is a big five trait
    13·1 answer
  • Determine the orbits period of the moon when the distance between the earth and the moon is 3.82 x 10 to the power of 8
    5·2 answers
  • Please help I have a time limit of 15 minutes and I only have 5 left
    13·2 answers
  • Two particles are separated by 0.38 m and have charges of -6.25 x 10-9C
    15·2 answers
  • **WILL MARK BRAINLIEST IF CORRECT**
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!