Answer:
The velocity of the police car is, v = 17.798 m/s
Explanation:
Given data,
The actual frequency of the siren, f = 2010 Hz
The observed frequency of siren is, f' = 2120 Hz
The velocity of the observer, v' = 0 m/s
The velocity of the source, v = ?
The formula for Doppler effect,

Where,
V - velocity of sound waves in air.

Substituting the given values,

v = 17.798 m/s
Hence, the velocity of the police car is, v = 17.798 m/s
5.8 moles of nitrogen gas are needed to pressurize the air bag.
<h3>What's the expression of Ideal gas equation?</h3>
- Ideal gas equation is PV=nRT
- P= pressure, V = volume, n= no. of moles of gas, R= universal gas constant, T = temperature of the gas
<h3>What's the no. of moles of nitrogen present in a 60L air bag at 2.37 atm pressure and 25°C temperature?</h3>
- P= 2.37 atm, V = 60L, R= 0.0821 L-atm/mol-K, T = 25°C = 298K
- n= PV/RT
= (2.37×60)/(0.0821×298)
= 5.8 moles
Thus, we can conclude that 5.8 moles of nitrogen gas are needed to pressurize the air bag.
Learn more about the ideal gas here:
brainly.com/question/20348074
#SPJ1
Answer: m∠P ≈ 46,42°
because using the law of sines in ΔPQR
=> sin 75°/ 4 = sin P/3
so ur friend is wrong due to confusion between edges
+) we have: sin 75°/4 = sin P/3
=> sin P = sin 75°/4 . 3 = (3√6 + 3√2)/16
=> m∠P ≈ 46,42°
Explanation:
What is not the ultimate goal of science is to produce unchanging and absolute answers - D. Scientists would like to, however, understand patterns, give explanations for natural events, and even make predictions. And it isn't really the case that they would like to produce unchanging answers.