Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by

we know that


now from above formula


so above is the work done to move the mass from surface to given altitude
Answer:
For 6.0 eV
0.5 nm, 1.45*10^6 m/s, 6.17*10^10 m/s, 1.45*10^6 m/s
For 600 eV
1.26*10^-3 nm, 2.66*10^8 m/s, 3.37*10^8 m/s, 2.66*10^8 m/s
Explanation:
See attachment for calculation
I think it is 100 dB .I holp it is help.
The normal force is always perpendicular to the surface. So it would be straight to the left of the wall
Answer:
false
Explanation:
Because the sun has ultraviolet rays