Answer:
Deltoid Force, 
Additional Information:
Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.
Explanation:
The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.
1. The torque about the point in the shoulder for the deltoid muscle,
2. The torque of the arm,
Assuming the arm is just being stretched and there is no rotation going on,
= 0
= 0
⇒ 

Where,
is radius of the deltoid
is the force of the deltiod
is the angle of the deltiod
is the radius of the arm
is the force of the arm ,
which is the mass of the arm and acceleration due to gravity
is the angle of the arm
The force of the deltoid muscle is,

but
,
∴ 
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
0.006<357<700.003<6010<9256.0<9520.00