Answer:
See the answers below
Explanation:
We can solve both problems using vector sum.
a)
Let's assume the forces that help the diver dive as positive downward, and the forces that oppose upward, as negative
![F_{resultant}=100+30-85+900\\F_{resultant}=845[N]](https://tex.z-dn.net/?f=F_%7Bresultant%7D%3D100%2B30-85%2B900%5C%5CF_%7Bresultant%7D%3D845%5BN%5D)
The drag force is horizontal d this way in the horizontal direction we will only have the drag force that produces the water stream.
![F_{drag}=50[N]](https://tex.z-dn.net/?f=F_%7Bdrag%7D%3D50%5BN%5D)
b)
Let's assume the forces that propel the rocket upwards as positive and forces like the weight of the rocket and other elements as negative forces.
![F_{resultant}=960+7080-7700\\F_{resultant}=340 [kN]](https://tex.z-dn.net/?f=F_%7Bresultant%7D%3D960%2B7080-7700%5C%5CF_%7Bresultant%7D%3D340%20%5BkN%5D)
The land of airplane gear of an airplane can be idealized as the spring-mass-damper system shown in fig. 3.52. if the runway surface is described
The acceleration of the object after 3 seconds of fall is -9.8 m/s².
The given parameters;
- initial velocity of the object, u = 0
- time of motion of the object, t = 3 seconds
Acceleration is the change in velocity per change in time of motion.
The acceleration of the object after 3 seconds of fall is calculated as follows;
- Since the object is in free fall, the object experiences only acceleration due to gravity.
- the magnitude of this acceleration due to gravity is 9.8 m/s²
- the direction of this acceleration is downwards
Thus, the acceleration of the object after 3 seconds of fall is -9.8 m/s².
Learn more here: brainly.com/question/13197713
Answer: c. 4.56 × 105 J
Explanation:
Given that
mass of lead brick, m= 7.25kg
Temperature T1 = 18.0 °C
Temperature T2 = 328 °C
specific heat capacity of lead, c = 128 J/(kg∙C°)
latent heat of fusion Lfusion =23,200 J/kg
Amount of energy Q =?
Using the formulae
Amount of energy ,Q =mc ( T2-T1)+ mLfusion
7.25kg x 128 J/(kg∙C°) x (328-18°C) + 7.25kg x 23200 J/kg
=455880J
=4.56 x 10^5 J