Answer:
It helps the answer look clean. It also makes the work easier to work with.
Explanation:
Instead of writing a lot of zeros, all you have to do is add exponents to the number to show how much the decimal moved.
Answer:
t = √2y/g
Explanation:
This is a projectile launch exercise
a) The vertical velocity in the initial instants ( = 0) zero, so let's use the equation
y = t -1/2 g t²
y= - ½ g t²
t = √2y/g
b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity
x = vox t
x = v₀ₓ √2y/g
c) Speeds before touching the ground
vₓ = vox = constant
= - gt
= 0 - g √2y/g
= - √2gy
tan θ = Vy / vx
θ = tan⁻¹ (vy / vx)
θ = tan⁻¹ (√2gy / vox)
d) The projectile is higher than the cliff because it is a horizontal launch
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
Answer:
Voltage across the capacitor is 30 V and rate of energy across the capacitor is 0.06 W
Explanation:
As we know that the current in the circuit at given instant of time is
i = 2.0 mA
R = 10 k ohm
now we know by ohm's law
so voltage across the capacitor + voltage across resistor = V
Now we know that
here rate of change in energy of the capacitor is given as
The equivalent gravitational force is ~
We know that ~
where,
- = mass of 1st object = 500 kg
- = mass of 2nd object = 20kg
- G = gravitational constant =
- r = distance between the objects = 2.12 m
Let's calculate the force ~