Answer:
<h3>Option A is the correct answer of your question</h3>
Answer:
A) 300
B) 3:1
C) 9 long yellow : 3 long green : 3 short yellow : 1 short green
Explanation:
Long stems (L_) are dominant to short stems (ll)
Yellow seeds (Y_) are dominant to green seeds (yy)
We interbred pea plants with long stems and yellow seeds (L_Y_), but they had a short green parent (llyy) that could have only produced <em>ly</em> gametes, so our plants are heterozygous <em>LlYy</em>.
C) We interbred them LlYy x LlYy. If the two genes are unlinked, this is a typical dihybrid cross and from Mendel's law of independent assortment we know that the offspring will have the following phenotypic ratios:
- 9/16 L_Y_ (Long, yellow)
- 3/16 L_yy (Long, green)
- 3/16 llY_ (short, yellow)
- 1/16 llyy (short, green)
A) 3/16 × 1600 = 300 plants will be long and green.
B)
9/16 + 3/16 = 12/16= 3/4 plants will be yellow;
3/16 + 1/16 = 4/16= 1/4 plants will be green.
The ratio will be 3 yellow : 1 green
idk hwjdvuhakjskzgyfbukjeasefdc
Restriction enzymes and or restriction endonucleases are involved at recognizing specific sequence of nucleotides and cutting or splicing them at appropriate regions to produce fragments that can either be sticky ends or blunt ends depending on where they cut and the nature of nucleotides involved within the fragments. They play an important role in genetic engineering, as geneticists can use them for placing into extra chromosomal information and or content of plasmids in certain bacteria, from other sources, for instance antibiotics, grow and or produce many individual colonies of bacteria, isolate them and one would have many sequences for instance that can code for an antibiotic that can be extracted and used further. Assuming the bacteria's plasmid can take in that sequence.