1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
13

Lots of points!!! Will give brainliest!

Mathematics
1 answer:
alekssr [168]3 years ago
8 0

The second equation is already solved for y, so we substitute it into the first equation.


x + 6y = 6


x + 6(1/3 x - 2) = 6


x + 2x - 12 = 6


3x = 18


x = 6


Now substitute 6 for x in the second original equation and solve for y.


y = 1/3 x - 2


y = 1/3 * 6 - 2


y = 2 - 2


y = 0


Answer: x = 6 and y = 0

You might be interested in
Kate bought a T-shirt for $12.95 and a pair of shorts for $10.95. She paid 6.25% in tax. What is her total amount that she paid?
sergeinik [125]

Kate paid $25.39 for her purchases.

Kate will receive $24.61 in change.

Step-by-step explanation:

Given,

Cost of t-shirt = $12.95

Cost of pair of shorts = $10.95

Total = cost of t-shirt + cost of pair of shorts

Total = 12.95 + 10.95 = $23.90

Sales tax = 6.25% of total amount

Amount of sales tax = \frac{6.25}{100}*23.90=\frac{149.375}{100}

Amount of sales tax= $1.49

Total amount with sales tax = 23.90 + 1.49 = $25.39

Kate paid $25.39 for her purchases.

Amount paid = $50

Change received = Amount paid - Bill amount

Change received = 50 - 25.39 = $24.61

Kate will receive $24.61 in change.

Keywords: sales tax, addition

Learn more about addition at:

  • brainly.com/question/11584312
  • brainly.com/question/116059

#LearnwithBrainly

3 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
The ratio of pencils to pens in the drawer is 8:14. If there are actually twice as many pencils as in the ratio, how many pencil
dusya [7]

Yo sup??

let the number of pencils and pens be 8x and 14x

x=2

therefore the number of pens and pencils are

16 pencils and 28 pens

Hope this helps

6 0
3 years ago
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS!!
OLga [1]

y^2(y^2+6) + 6(y^2+6)

(y^2+6)^2

4 0
3 years ago
Solve r=s/17−t for t
mamaluj [8]
T=-r+s/17

Explanation:
6 0
2 years ago
Other questions:
  • 3(3y-4)=51 solve for y
    14·2 answers
  • Help me please thank
    14·1 answer
  • 11+3x-7=6x+5-3x what is the answer
    7·2 answers
  • Type the missing number in this sequence 6, 36, blank, 1,296, 7,776, 46,656
    15·2 answers
  • PLZ HELP, 20 pts and brainliest awarded, plz ASAP!!!!!!<br><br> see image below
    7·1 answer
  • Please help write a system of equations to represent the scenario
    15·1 answer
  • Find the measure of angle a<br>​
    10·2 answers
  • What is 28 divided by 4?
    10·2 answers
  • Nine less than the product of a number n and 1/6 is no more than 92
    12·1 answer
  • I WILL GIVE 20 POINTS TO THOSE WHO ANSWER THIS QUESTION RIGHT NOOOO SCAMS AND EXPLAIN WHY THAT IS THE ANSWER
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!