Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Answer:
there yah go that's the answer
Answer:
734.16 kg m/
Explanation:
The problem is asking for the Force of pushing off the ground.
- The formula of Force is: F = mass x acceleration
Given = <em>Mass</em>: 600 newtons (N)
<em>Acceleration</em>: 12 m/
We have to convert the mass into kg first. Remember that <u>1 kg is equal to 9.80665 newtons.</u>
Let x be the<em> mass in newtons</em>.
Let's convert:
x
=
= 61.18 kg
Phil's weight is 61.18 kg
Let's go back to finding the force.
F = m x a
F = 61.18 kg x 12 m/
F = 734.16 kg m/
Basically, this problem asks you to convert kilocalories (kcal) to kilojoules (kJ). Both are units of energy. To convert kcal to kJ, the equivalence is: 1 kcal = 4.184 kJ. Through dimensional analysis, the solution is as follows:
750 kcal * 4.184 kJ/1 kcal = 3,138 kJ
An equipotential surface is a three-dimensional version of equipotential lines. * *Equipotential lines are always perpendicular to electric field lines* . The process by which a conductor can be fixed at zero volts by connecting it to the earth with a good conductor is called grounding.