Answer:
Straight line parallel to time axis.
Explanation:
The slope of the position time graph gives the velocity.
As the man is still, that means the velocity is zero. So, the slope of the graph is zero. It is a straight line parallel to time axis.
Yes it is work because when you throw a ball, you transfer energy to it and it moves.
The magnitude of the resultant force on the balloon is 374.13 N.
The given forces from the image;
- <em>Upward force = 514 N</em>
- <em>Downward force = 267 N</em>
- <em>Eastward force = 678 N</em>
- <em>Westward force = 397 N</em>
The net vertical force on the balloon is calculated as follows;

The net horizontal force on the balloon is calculated as follows;

The magnitude of the resultant force on the balloon is calculated as follows;

Thus, the magnitude of the resultant force on the balloon is 374.13 N.
Learn more here:brainly.com/question/4404327
The vectors adition we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Parameters given
- Force of an astronaut Fₓ = 42 N
To find
The force is a vector magnitude for which the addition of vectors must be used, a very efficient method to perform this sum is to add the components of each vector and devise constructing the resulting vector using trigonometry and the Pythagorean theorem.
Let's use trigonometry to find the other force
tan θ =
F_ y = Fₓ tan θ
let's calculate
F_y = 42 tan 15
F_y = 11.25 N
Using the summation of vectors we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Learn more about vector addition here:
brainly.com/question/15074838
Answer:
Conductors.
Explanation:
Conductors allow the flow of electrons i. e. the current and where some of the electrons energy gets converted into heat while some electrons energy converted into light. Conductors are the materials which has the ability to allow heat and electricity to flow through them. Metals such as gold, copper, Silver, Aluminum, Mercury, Steel, Iron and salty water etc are good conductors of heat and electricity.