Answer:
The second vector
points due West with a magnitude of 600N
Explanation:
The original vector
points with a magnitude of 200N due east, the Resultant vector
points due west (that's how east/west direction can be interpreted, from east to west) with a magnitude of 400N. If we choose East as the positive direction and West as the negative one, we can write the following vectorial equation:

With the negative sign signifying that the vector points west.
a 10 kg block reaches a point with a velocity of 15 m per second and slides down a rough track my the coefficient of the kinetic energy between the two surface ab and the block iis0.52
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Answer:
Explanation:
This is a recoil problem, which is just another application of the Law of Momentum Conservation. The equation for us is:
which, in words, is
The momentum of the astronaut plus the momentum of the piece of equipment before the equipment is thrown has to be equal to the momentum of all that same stuff after the equipment is thrown. Filling in:
![[(90.0)(0)+(.50)(0)]_b=[(90.0)(v)+(.50)(-4.0)]_a](https://tex.z-dn.net/?f=%5B%2890.0%29%280%29%2B%28.50%29%280%29%5D_b%3D%5B%2890.0%29%28v%29%2B%28.50%29%28-4.0%29%5D_a)
Obviously, on the left side of the equation, nothing is moving so the whole left side equals 0. Doing the math on the right and paying specific attention to the sig fig's here (notice, I added a 0 after the 4 in the velocity value so our sig fig's are 2 instead of just 1. 1 is useless in most applications).
0 = 90.0v - 2.0 and
2.0 = 90.0v so
v = .022 m/s This is the rate at which he is moving TOWARDS the ship (negative was moving away from the ship, as indicated by the - in the problem). Now we can use the d = rt equation to find out how long this process will take him if he wants to reach his ship before he dies.
12 = .022t and
t = 550 seconds, which is the same thing as 9.2 minutes
Given:
Work done, W = 5 J
Initial energy = 8J
Final energy = 30J
Let's determine if the work done have a positive or nrgative value.
Appy the equation for the first lae of thermodynamics:

Where:
U is the change in internal energy
Q is the added heat
W is the work done
To find the work done here, we have:
Rewrite the formula for W

Where:
ΔU = 30J - 8J = 22J
Q = 5J
Thus, we have:

Therefore, the work done here is -17J.
This means the work done in this scenario has a negative value.
ANSWER:
The work done in this scenario has a negative value