The pH of the solution at 25 degree celsius of 1.3 × 10⁻⁶ moles of a sample of Sr(OH)₂ is 10.02.
<h3>How do we calculate pH?</h3>
The pH of any solution gives an idea about the acidic and basic nature of the solution and the equation of pH will be represented as:
pH + pOH = 14
Given that,
Moles of Sr(OH)₂ = 1.3 × 10⁻⁶ mol
Volume of solution = 25mL = 0.025L
The concentration of Sr(OH)₂ in terms of molarity = 1.3×10⁻⁶/0.025
= 5.2×10¯⁵M
Dissociation of Sr(OH)₂ takes place as:
Sr(OH)₂ → Sr²⁺ + 2OH⁻
From the stoichiometry of the reaction 1 mole of Sr(OH)₂ produces 2 moles of OH⁻.
Given that the base is a strong base and that it entirely dissociates into its ions, the hydroxide ion concentration is 5.2×10¯⁵×2 = 1.04×10¯⁴ M.
pOH = -log[OH⁻]
pOH = -log(1.04×10¯⁴)
pOH = 3.98
Now we put this value on the first equation we get,
pH = 14 - 3.98 = 10.02
Therefore, the value of pOH is 10.02.
Learn more about pH here:
brainly.com/question/24595796
#SPJ4
It would have THREE rings/energy levels. This is because of the amount of electrons each orbital can hold.
There are several units for expressing energy, Most common are joules and kilocalories.
The conversion factor of joule to kilocalories is
1 kilo calorie = 4184 J
∴ x kilo calorie = 256 J
x =

kilo calories
Thus, 256 J = 0.0611 kilocalories
Gases in which the molecules that make it up naturally consist of two atoms of the same type.
Answer: A
Explanation: Protons and neutrons form the nucleus of the atom, with electrons orbiting it.