Answer:
C2H6O + 3O2 —> 2CO2 + 3H2O
Explanation:
Answer:
ΔG° = 41.248 KJ/mol (298 K); the correct answer is a) 41 KJ
Explanation:
Ag+(aq) + 2NH3(aq) ↔ Ag(NH3)2+(aq)
⇒ Kf = 1.7 E7; T =298K
⇒ ΔG° = - RT Ln Kf.....for aqueous solutions
∴ R = 8.314 J/mol.K
⇒ ΔG° = - ( 8.314 J/mol.K ) * ( 278 K ) ln ( 1.7 E7 )
⇒ ΔG° = 41248.41 J/mol * ( KJ / 1000J )
⇒ ΔG° = 41.248 KJ/mol
Answer:
18.73× 10²³ formula units
Explanation:
Given data:
Number of moles of Ca(NO₃)₂ = 3.11 mol
Number of formula units = ?
Solution:
Avogadro number:
"It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance"
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Number of formula units of Ca(NO₃)₂:
1 mole contain 6.022 × 10²³ formula units
3.11 mol × 6.022 × 10²³ formula units / 1 mol
18.73× 10²³ formula units
Answer:
Molarity of NaOH solution is 1.009 M
Explanation:
Molar mass of HCl is 36.46 g/mol
Number moles = (mass)/(molar mass)
So, 0.8115 g of HCl =
HCl = 0.02226 moles HCl
1 mol of NaOH neutralizes 1 mol of HCl.
So, if molarity of NaOH solution is S(M) then moles of NaOH required to reach endpoint is 
So, 
or, S = 1.009
So, molarity of NaOH solution is 1.009 M
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for reaction of potassium superoxide with carbon dioxide to produce oxygen and potassium carbonate will be:
