Answer:

Explanation:
Density is found by dividing the mass by the volume.

The mass of the object is 11 grams and the volume is 13 milliliters.

Substitute the values into the formula.

Divide.

Round to the nearest hundredth. The 6 in the thousandth place tells us to round the 4 to a 5.

The density is about <u>0.85 grams per milliliter.</u>
Electronic configuration: The distribution or arrangement of electrons of a molecule or an atom in molecular or atomic orbitals.
Ground state electron configuration: The distribution of electrons of an atom or molecule around the nucleus with lower levels of energy.
Now,
stands for Ruthenium with atomic number 44. It is a metal and thus, has ability to lose electrons and, becomes positively charged ion.
One can write the electronic configuration with the help of atomic number and Afbau principle, Pauli exclusion principle etc.
Ground electronic Configuration is as follows:

Soft Hand notation: ![[Kr]4d^{7}5s^{1}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B7%7D5s%5E%7B1%7D)
Now, when ruthenium loses two electrons then it becomes
, thus electron configuration becomes
Soft Hand notation: ![[Kr]4d^{6}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B6%7D)
The ground state electronic configuration of Ruthenium is
and when it loses two electrons, then electronic configuration becomes
(
)
Answer:
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
Explanation:
Considering the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution as:
Where Ka is the dissociation constant of the acid.
pKa of phenolphthalein = 9.40
pH = 10.9
So,
![\frac{[magenta\ phenolphthalein]}{[colorless\ phenolphthalein]}=31.62](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bmagenta%5C%20phenolphthalein%5D%7D%7B%5Bcolorless%5C%20phenolphthalein%5D%7D%3D31.62)
It is an element. Aluminun foil is aluminum prepared in thin leaves.