Explanation:
balance the equation ...HCl,Ba(OH) and BaCl2 are aqueous
know groups of the elements H 1+ ,Cl -,Ba 2+,OH-
write complete ionic eqution and eliminate spectator ions those appearing on both sides Cl and Ba
Answer:
2.387 mol/L
Explanation:
The reaction that takes place is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
First we <u>calculate how many moles of each reagent were added</u>:
- HCl ⇒ 200.0 mL * 3.85 M = 203.85 mmol HCl
- Ba(OH)₂ ⇒ 100.0 mL * 4.6 M = 460 mmol Ba(OH)₂
460 mmol of Ba(OH)₂ would react completely with (2*460) 920 mmol of HCl. There are not as many mmoles of HCl so Ba(OH)₂ will remain in excess.
Now we <u>calculate how many moles of Ba(OH)₂ reacted</u>, by c<em>onverting the total number of HCl moles to Ba(OH)₂ moles</em>:
- 203.85 mmol HCl *
= 101.925 mmol Ba(OH)₂
This means the remaining Ba(OH)₂ is:
- 460 mmol - 101.925 mmol = 358.075 mmoles Ba(OH)₂
There are two OH⁻ moles per Ba(OH)₂ mol:
- OH⁻ moles = 2 * 358.075 = 716.15 mmol OH⁻
Finally we <u>divide the number of OH⁻ moles by the </u><u><em>total</em></u><u> volume</u> (100 mL + 200 mL):
- 716.15 mmol OH⁻ / 300.0 mL = 2.387 M
So the answer is 2.387 mol/L
Answer:
Explanation:
moles of acetic acid = 500 x 10⁻³ x .1 M
= 5 X 10⁻³ M
.005 M
Moles of NaOH = .1 M
Moles of sodium acetate formed = .005 M
Moles of NaOH left = .095 M
pOH = 4.8 + log .005 / .095
= 4.8 -1.27875
= 3.52125
pH = 14 - 3.52125
= 10.48
Answer:
The correct option is;
The gas particles move faster, have the same molecular composition, and have weaker attractions between them than the liquid particles
Explanation:
The properties of the gas molecules in comparison to liquids are
1) The gas molecules are widely spread out
2) After evaporation and while in conditions favorable to the gaseous state, the kinetic energy of a gas is larger than the inter molecular attractive forces
3) A gas fills the container in which it is placed
For liquids
1) There are strong intermolecular forces holding the molecules together in a liquid
2) Liquid attractive forces in a liquid are strong enough to hold neighboring molecules
3) The volume of a liquid is definite.