Answer:
Pure substance B) Consists of a single element or type of compound.
Homogeneous A) Mixture that has its different components mixed evenly within the substance.
Heterogeneous D) Mixture that has its different components mixed unevenly within the substance.
Solution C) Liquid homogeneous mixture in which the solute is distributed evenly within the solvent.
Explanation:
Pure substances are a form of matter with definite constant composition and distinct properties. They consist of a single element or type of compound, as can be seen in its formula. Na, O₂, NaCl and H₂O are examples of pure substances.
When 2 or more pure substances are mixed together they form a mixture. If the mixture has its different components mixed <u>evenly</u> within the substance it is a homogeneous mixture. Whereas if the mixture has its different components mixed <u>unevenly</u> within the substance it is a heterogeneous mixture. The different parts observable in a heterogeneous mixture are known as phases.
In liquid homogeneous mixtures, we can recognize one or more substances that are in lower proportions (solutes) and one substance that is in greater proportion (solvent). This kind of mixture is known as a solution.
It seems that you have missed the given image to answer this question. But anyway, I found it and got the answer. Based on the topographical map of a section of Charleston, SC, the feature that is <span>located at the dot marked with an X is the high point of a hill. The answer would be option D.</span>
Markovnikov rule, in organic chemistry, a generalization, formulated by Vladimir Vasilyevich Markovnikov in 1869, stating that in addition reactions to unsymmetrical alkenes, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component ...
Sodium is the reducing agent because a reducing agent is always the donor of electrons.
Answer: A
Explanation:
Extreme weather events follow normal climate patterns.