Answer:
28 x^3
Step-by-step explanation:
4x(7x^2)
4 * x* 7* x*x
4*7 x*x*x
28 x^3
Answer:
5
Step-by-step explanation:
if u add al of these it equals 35 divided by 7 equals 5
The <u>correct answer</u> is:
B) The variables are height and time. For the first part of the graph, the height is increasing slowly, which means the hiker is walking up a gentle slope. Flat parts of the graph show where the elevation does not change, which means the trail is flat here. The steep part at the end of the graph shows that the hiker is descending a steep incline.
Explanation:
The variables are marked on the graph. Time is marked along the x-axis, which means it is the independent variable. Height is marked along the y-axis, which means it is the dependent variable.
The first part of the graph rises slowly. This means the elevation does not change much over the time; this would be consistent with a gentle slope being climbed.
The flat areas are where the elevation does not change. This would be consistent with the hiker resting.
The steep decrease at the end shows that the elevation goes down quickly. This is consistent with the hiker climbing down a steep slope.
For this problem, the confidence interval is the one we are looking
for. Since the confidence level is not given, we assume that it is 95%.
The formula for the confidence interval is: mean ± t (α/2)(n-1) * s √1 + 1/n
Where:
<span>
</span>
α= 5%
α/2
= 2.5%
t
0.025, 19 = 2.093 (check t table)
n
= 20
df
= n – 1 = 20 – 1 = 19
So plugging in our values:
8.41 ± 2.093 * 0.77 √ 1 + 1/20
= 8.41 ± 2.093 * 0.77 (1.0247)
= 8.41 ± 2.093 * 0.789019
= 8.41 ± 1.65141676
<span>= 6.7586 < x < 10.0614</span>
2/5(x - 1) < 3/5(1 + x)
To find the solution, we can use the distributive property to simplify.
2/5x - 2/5 < 3/5 + 3/5x
Multiply all terms by 5.
2x - 2 < 3 + 3x
Subtract 2x from both sides.
-2 < 3 + x
Subtract 3 from both sides.
-5 < x
<h3><u>The value of x is greater than the value of -5.</u></h3>