Answer:
option b is the correct answer
Organic is safer inorganic is the same but less better
The ionization energy for a hydrogen atom in the n = 2 state is 328 kJ·mol⁻¹.
The <em>first ionization energy</em> of hydrogen is 1312.0 kJ·mol⁻¹.
Thus, H atoms in the <em>n</em> = 1 state have an energy of -1312.0 kJ·mol⁻¹ and an energy of 0 when <em>n</em> = ∞.
According to Bohr, Eₙ = k/<em>n</em>².
If <em>n</em> = 1, E₁= k/1² = k = -1312.0 kJ·mol⁻¹.
If <em>n</em> = 2, E₂ = k/2² = k/4 = (-1312.0 kJ·mol⁻¹)/4 = -328 kJ·mol⁻¹
∴ The ionization energy from <em>n</em> = 2 is 328 kJ·mol⁻¹
.
Answer:
- <u>Yes, it is 14. g of compound X in 100 ml of solution.</u>
Explanation:
The relevant fact here is:
- the whole amount of solute disolved at 21°C is the same amount of precipitate after washing and drying the remaining liquid solution: the amount of solute before cooling the solution to 21°C is not needed, since it is soluble at 37°C but not soluble at 21°C.
That means that the precipitate that was thrown away, before evaporating the remaining liquid solution under vacuum, does not count; you must only use the amount of solute that was dissolved after cooling the solution to 21°C.
Then, the amount of solute dissolved in the 600 ml solution at 21°C is the weighed precipitate: 0.084 kg = 84 g.
With that, the solubility can be calculated from the followiing proportion:
- 84. g solute / 600 ml solution = y / 100 ml solution
⇒ y = 84. g solute × 100 ml solution / 600 ml solution = 14. g.
The correct number of significant figures is 2, since the mass 0.084 kg contains two significant figures.
<u>The answer is 14. g of solute per 100 ml of solution.</u>
Answer:
Option (D) is definitely the answer.
Explanation:
Before going further, it is important to know what buffers and pH represent, which are keywords to answering this question.
Buffers is a special solution that can withstand or resist changes due to pH levels which may be as a result of an introduction of acidic or basic components into the blood. In other words, they maintain the stability of pH level in the human blood.
pH blood levels on the other hand, can be grouped into three: acidity, neutrality and alkalinity. Using a pH scale, one can determine its current level. In the human blood the pH level is near neutral and needs to be on a level near 7.4 in order to avoid a high rise or a drastic fall even if acidic or basic components come in or departs the blood stream.
Therefore, if one of the buffers that contributes to pH stability in human blood is carbonic acid, which is as a result of a combination of carbon dioxide and water in the blood stream. On getting to the lungs it is converted to water and subsequently released as waste. Maintaining this stability will definitely be to decrease the concentration of carbonic acid and increase that of water instead.