Answer:
The products are carbon dioxide and water
Explanation:
Step 1: Data given
Combustion = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
Step 2: The complete combustion of C3H7OH:
For the combustion of 1-propanol, we need O2.
The products of this combustion are CO2 and H2O.
C3H7OH + O2→ CO2 + H2O
On the left side we have 3x C (in c3H7OH), on the right side we have 1x C (in CO2). To balance the amount of C, we have to multiply CO2 on the right side by 3
C3H7OH + O2→ 3CO2 + H2O
On the left side we have 8x H (in C3H7OH) and 2x on the right side (in H2O). To balance the amount of H, we have to multiply H2O, on the right side by 4.
C3H7OH + O2→ 3CO2 + 4H2O
On the left side we have 3x O (1x in C3H7OH and 2x in O2), on the right side we have 10x O (6x in CO2 and 4x in H2O).
To balance the amount of O on both sides, we have to multiply C3H7OH by 2, multiply O2 by 9. Then we have to multiply 3CO2 by 2 and 4H2O by 2. Now the equation is balanced.
2C3H7OH + 9O2→ 6CO2 + 8H2O
For 2 moles propanol, we need 9 moles of O2 to produce 6 moles of CO2 and 8 moles Of H2O
The products are carbon dioxide and water
In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
Using the chart that has been provided, we may determine water temperature. We do this by drawing a straight line form the bottom scale which has the ppm of oxygen dissolved to the middle scale which has the percentage saturation.
The line starts from 11.5 ppm on the bottom scale and goes to 90% on the middle scale. Next, we continue this line, without changing its slope, to the third scale showing temperature. We see that it crosses the temperature scale at 4°C.
The temperature of the water is 4 °C.
Answer:
reproduction
Explanation:
reproduction, process by which organisms replicate themselves
Answer:
hporntue dhdjehwgs r. rvegdyfuee
Explanation:
ehehrhrhrhrhrhrhr. dvdhdhrhrhehehr f fbdhehrgdgdhehd dbdh