Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
Answer:
I think that middle school teachers are interested in teaching middle schoolers.
Answer:
D
Explanation:
We must study the reaction pictured in the question closely before we begin to attempt to answer the question.
Now, the reaction is a free radical reaction. This implies that only one electron is transferred. The transfer of one electron is shown using a half arrow rather than a full arrow. The both species are radicals (odd electron species) and contribute one electron each.
Hence we must show electron movements in both species using a half arrow.
Answer:
It's the 4th one. waves are created by the wind
Answer:
T =76.13 K
Explanation:
Given data:
Temperature of gas = ?
Volume of gas = 250 mL(250/1000 = 0.25 L)
Mass of helium = 0.40 g
Pressure of gas = 253.25 kpa (253.25/101 = 2.5 atm)
Solution:
Formula:
PV = nRT
First of all we will determine the number of moles of helium.
Number of moles = mass/ molar mass
Number of moles = 0.40 g/ 4 g/mol
Number of moles = 0.1 mol
Now we will put the values.
R = general gas constant = 0.0821 atm.L/ mol.K
T = PV/nR
T =2.5 atm× 0.25 L /0.1 mol ×0.0821 atm.L/ mol.K
T = 0.625 /0.00821/K
T =76.13 K